Human herpesvirus diversity is altered in HLA class I binding peptides
[Significance] Viruses evolve to evade immune recognition that may otherwise limit transmission. Presentation of virus peptides by human leukocyte antigen (HLA) class I is a necessary step in the recognition of infection by immune cells. Virus adaptation to evade this immune recognition has not been formally tested across the diversity of HLA class I allotypes and virus strains. We analyzed genetic diversity of three human herpesviruses across peptides that bind diverse HLA class I allotypes. We find that adaptation to evade HLA class I recognition may be a general phenomenon shaping human herpesvirus genetic diversity, particularly for those proteins expressed during viral latency. This broad scope, across human and virus diversity, provides a unique comparative perspective of human–herpesvirus coevolution.
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | artículo biblioteca |
Language: | English |
Published: |
National Academy of Sciences (U.S.)
2022-04-29
|
Subjects: | HLA, Herpesvirus, Population genetics, EBV, HCMV, |
Online Access: | http://hdl.handle.net/10261/272143 http://dx.doi.org/10.13039/501100011033 http://dx.doi.org/10.13039/501100000780 http://dx.doi.org/10.13039/501100004587 http://dx.doi.org/10.13039/501100004837 http://dx.doi.org/10.13039/501100003329 http://dx.doi.org/10.13039/100000002 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Significance] Viruses evolve to evade immune recognition that may otherwise limit transmission. Presentation of virus peptides by human leukocyte antigen (HLA) class I is a necessary step in the recognition of infection by immune cells. Virus adaptation to evade this immune recognition has not been formally tested across the diversity of HLA class I allotypes and virus strains. We analyzed genetic diversity of three human herpesviruses across peptides that bind diverse HLA class I allotypes. We find that adaptation to evade HLA class I recognition may be a general phenomenon shaping human herpesvirus genetic diversity, particularly for those proteins expressed during viral latency. This broad scope, across human and virus diversity, provides a unique comparative perspective of human–herpesvirus coevolution. |
---|