Water beetles as models in ecology and evolution

Beetles have colonized water many times during their history, with some of these events involving extensive evolutionary radiations and multiple transitions between land and water. With over 13,000 described species, they are one of the most diverse macroinvertebrate groups in most nonmarine aquatic habitats and occur on all continents except Antarctica. A combination of wide geographical and ecological range and relatively accessible taxonomy makes these insects an excellent model system for addressing a variety of questions in ecology and evolution. Work on water beetles has recently made important contributions to fields as diverse as DNA taxonomy, macroecology, historical biogeography, sexual selection, and conservation biology, as well as predicting organismal responses to global change. Aquatic beetles have some of the best resolved phylogenies of any comparably diverse insect group, and this, coupled with recent advances in taxonomic and ecological knowledge, is likely to drive an expansion of studies in the future.

Saved in:
Bibliographic Details
Main Authors: Bilton, David T., Ribera, Ignacio, Short, Andrew Edward Z.
Other Authors: European Commission
Format: artículo biblioteca
Published: Annual Reviews 2019-01
Subjects:Coleoptera, habitat shifts, Model organisms, Biogeography, Sexual selection, Indicator taxa,
Online Access:http://hdl.handle.net/10261/206021
http://dx.doi.org/10.13039/501100000780
http://dx.doi.org/10.13039/501100011033
http://dx.doi.org/10.13039/501100003329
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Beetles have colonized water many times during their history, with some of these events involving extensive evolutionary radiations and multiple transitions between land and water. With over 13,000 described species, they are one of the most diverse macroinvertebrate groups in most nonmarine aquatic habitats and occur on all continents except Antarctica. A combination of wide geographical and ecological range and relatively accessible taxonomy makes these insects an excellent model system for addressing a variety of questions in ecology and evolution. Work on water beetles has recently made important contributions to fields as diverse as DNA taxonomy, macroecology, historical biogeography, sexual selection, and conservation biology, as well as predicting organismal responses to global change. Aquatic beetles have some of the best resolved phylogenies of any comparably diverse insect group, and this, coupled with recent advances in taxonomic and ecological knowledge, is likely to drive an expansion of studies in the future.