Does food complexity have a role in eliciting expectations of satiating capacity?

New strategies for formulating healthy, balanced food with enhanced expected satiating capacity are a hot topic. The present work tests the hypothesis that adding complexity to food will result in higher expectations of satiating capacity. Different kinds of "visible" particles (wheat bran, ground coconut, flaxseeds and oat meal) were added to cheese pies with the aim of increasing the complexity of both their appearance and their texture. Two more basic recipes were also prepared with no particles added. Instrumental texture measurements, complexity and expected satiating capacity consumer scoring and sensory profiling of the six pie formulations were performed. In addition, the consumers were asked to write down the characteristics they took into account in their pie complexity scores. For pies with very similar instrumental TPA hardness and resistance to penetration values, a clear trend that emerged was that the more complex the texture, the higher the satiating capacity expectations. The qualitative analysis of the terms mentioned by consumers was of great value for understanding the concepts underlying the appraisal of the samples' complexity.

Saved in:
Bibliographic Details
Main Authors: Marcano, Johanna, Morales, Diana, Vélez Ruiz, Jorge, Fiszman, Susana
Other Authors: Ministerio de Economía y Competitividad (España)
Format: artículo biblioteca
Published: Elsevier BV 2015-09
Subjects:Complexity, Expected satiating capacity, Texture, Sensory properties,
Online Access:http://hdl.handle.net/10261/333244
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:New strategies for formulating healthy, balanced food with enhanced expected satiating capacity are a hot topic. The present work tests the hypothesis that adding complexity to food will result in higher expectations of satiating capacity. Different kinds of "visible" particles (wheat bran, ground coconut, flaxseeds and oat meal) were added to cheese pies with the aim of increasing the complexity of both their appearance and their texture. Two more basic recipes were also prepared with no particles added. Instrumental texture measurements, complexity and expected satiating capacity consumer scoring and sensory profiling of the six pie formulations were performed. In addition, the consumers were asked to write down the characteristics they took into account in their pie complexity scores. For pies with very similar instrumental TPA hardness and resistance to penetration values, a clear trend that emerged was that the more complex the texture, the higher the satiating capacity expectations. The qualitative analysis of the terms mentioned by consumers was of great value for understanding the concepts underlying the appraisal of the samples' complexity.