Monitoring the evolution of SARS-CoV-2 on a Spanish university campus through wastewater analysis: A pilot project for the reopening strategy

Wastewater surveillance is a fast and cost-effective tool that enables tracing of both symptomatic and asymptomatic transmission of SARS-CoV-2. In this paper, a pilot program carried out at the University Jaume I for monitoring the trends of the presence of SARS-CoV-2 in wastewater. To the best of our knowledge, this is the first such project conducted on a university campus in Spain. Wastewater samples (n = 838) were collected when students returned to campus, from October 2020 until August 2021, at a confluence sewer point and at the building level including different academic departments and services, the library, administration offices and the university student residence. It has been observed that the probability of SARS-CoV-2 RNA detection in wastewater depended on COVID-19 incidence on campus and visitors/occupants of the buildings i.e., high-, or low-traffic buildings with high or low frequency of potential contacts. Moreover, the third wave in Spain (after Christmas 2020) and an outbreak that occurred at the university student's residence could be carefully followed, allowing confirmation of the end of the outbreak. In addition, viral variants (i.e., mutations and linages) from selected time points were detected by sequencing and gave an indication of the evolution of the virus over time. The results illustrate the potential of wastewater-based epidemiology to provide an early warning for SARS-CoV-2 within the university, especially in buildings with low traffic and more defined populations, like the student residence. The strategy and experience gathered in this study will allow for implementation of improvements for reliable monitoring in the future.

Saved in:
Bibliographic Details
Main Authors: Llanos, Rosa de, Cejudo-Marín, Rocío, Barneo Muñoz, Manuela, Pérez-Cataluña, Alba, Barberá-Riera, María, Rebagliato, Marisa, Bellido-Blasco, Juan B., Sánchez Moragas, Gloria, Hernández, Félix, Bijlsma, Lubertus
Other Authors: Universidad Jaime I
Format: artículo biblioteca
Language:English
Published: Elsevier BV 2022-11-01
Subjects:Wastewater-based epidemiology, COVID-19, Pandemic, Sewage, University campus, Virus variants,
Online Access:http://hdl.handle.net/10261/280566
http://dx.doi.org/10.13039/501100004834
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wastewater surveillance is a fast and cost-effective tool that enables tracing of both symptomatic and asymptomatic transmission of SARS-CoV-2. In this paper, a pilot program carried out at the University Jaume I for monitoring the trends of the presence of SARS-CoV-2 in wastewater. To the best of our knowledge, this is the first such project conducted on a university campus in Spain. Wastewater samples (n = 838) were collected when students returned to campus, from October 2020 until August 2021, at a confluence sewer point and at the building level including different academic departments and services, the library, administration offices and the university student residence. It has been observed that the probability of SARS-CoV-2 RNA detection in wastewater depended on COVID-19 incidence on campus and visitors/occupants of the buildings i.e., high-, or low-traffic buildings with high or low frequency of potential contacts. Moreover, the third wave in Spain (after Christmas 2020) and an outbreak that occurred at the university student's residence could be carefully followed, allowing confirmation of the end of the outbreak. In addition, viral variants (i.e., mutations and linages) from selected time points were detected by sequencing and gave an indication of the evolution of the virus over time. The results illustrate the potential of wastewater-based epidemiology to provide an early warning for SARS-CoV-2 within the university, especially in buildings with low traffic and more defined populations, like the student residence. The strategy and experience gathered in this study will allow for implementation of improvements for reliable monitoring in the future.