Estimation of viscosity and hydrolysis kinetics of corn starch gels based on microstructural features using a simplified model
Viscosity is an important rheological property, which may have impact on the glycemic response of starchy foods. However, the relationship between starch gels viscosity on its hydrolysis has not been elucidated. The aim of this work was to assess the effect of gels viscosity on the microstructure, and the kinetics of enzymatic hydrolysis of starch. Corn starch gels were prepared from starch:water ratios varying from 1:4 to 1:16. A structural model was proposed that correlated (R-square = 0.98) the porous structure (cavity sizes, thickness walls) of gels and its viscosity. Kinetics constants of hydrolysis decreased with increasing starch content and consequently with gel viscosity. Relationships of viscosity with the microstructural features of gels suggested that enzyme diffusion into the gel was hindered, with the subsequent impact on the hydrolysis kinetics. Therefore, starch digestibility could be governed by starch gels viscosity, which also affected their microstructure.
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | artículo biblioteca |
Language: | English |
Published: |
Elsevier
2021-08-11
|
Subjects: | In vitro digestibility, Microstructure, Modelling, Starch content, |
Online Access: | http://hdl.handle.net/10261/248517 http://dx.doi.org/10.13039/501100000780 http://dx.doi.org/10.13039/501100003359 http://dx.doi.org/10.13039/501100004837 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Viscosity is an important rheological property, which may have impact on the glycemic response of starchy foods. However, the relationship between starch gels viscosity on its hydrolysis has not been elucidated. The aim of this work was to assess the effect of gels viscosity on the microstructure, and the kinetics of enzymatic hydrolysis of starch. Corn starch gels were prepared from starch:water ratios varying from 1:4 to 1:16. A structural model was proposed that correlated (R-square = 0.98) the porous structure (cavity sizes, thickness walls) of gels and its viscosity. Kinetics constants of hydrolysis decreased with increasing starch content and consequently with gel viscosity. Relationships of viscosity with the microstructural features of gels suggested that enzyme diffusion into the gel was hindered, with the subsequent impact on the hydrolysis kinetics. Therefore, starch digestibility could be governed by starch gels viscosity, which also affected their microstructure. |
---|