Significance of heat-moisture treatment conditions on the pasting and gelling behaviour of various starch-rich cereal and pseudocereal flours

The impact of heat-moisture treatment processing conditions (15%, 25%, and 35% moisture content; 1, 3, and 5 h heating time at 120 ℃) on the viscosity pasting and gelling profiles of different grain flours matrices (barley, buckwheat, sorghum, high β-glucan barley, and wheat) was investigated by applying successive cooking and cooling cycles to rapid visco analyser canisters with highly hydrated samples (3.5:25, w:w). At a milder heat-moisture treatment conditions (15% moisture content, 1 h heating time), except for sorghum, heat-moisture treatment flours reached much higher viscosity values during earlier pasting and subsequent gelling than the corresponding native counterparts. Besides heat-moisture treatment wheat flour, the described behaviour found also for non-wheat-treated flours has not been previously reported in the literature. An increased hydrophobicity of prolamins and glutelins in low moisture-short heating time heat-moisture treatment of non-wheat flours with high protein content (12.92%–19.95%) could explain the enhanced viscosity profile observed.

Saved in:
Bibliographic Details
Main Author: Collar, Concha
Other Authors: Ministerio de Economía y Competitividad (España)
Format: artículo biblioteca
Language:English
Published: Sage Publications 2017-06-13
Subjects:Heat-moisture treatment, Pasting, Gelling, Gelatinization, Grain flours,
Online Access:http://hdl.handle.net/10261/180462
http://dx.doi.org/10.13039/501100000780
http://dx.doi.org/10.13039/501100003329
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The impact of heat-moisture treatment processing conditions (15%, 25%, and 35% moisture content; 1, 3, and 5 h heating time at 120 ℃) on the viscosity pasting and gelling profiles of different grain flours matrices (barley, buckwheat, sorghum, high β-glucan barley, and wheat) was investigated by applying successive cooking and cooling cycles to rapid visco analyser canisters with highly hydrated samples (3.5:25, w:w). At a milder heat-moisture treatment conditions (15% moisture content, 1 h heating time), except for sorghum, heat-moisture treatment flours reached much higher viscosity values during earlier pasting and subsequent gelling than the corresponding native counterparts. Besides heat-moisture treatment wheat flour, the described behaviour found also for non-wheat-treated flours has not been previously reported in the literature. An increased hydrophobicity of prolamins and glutelins in low moisture-short heating time heat-moisture treatment of non-wheat flours with high protein content (12.92%–19.95%) could explain the enhanced viscosity profile observed.