Inulin enrichment of gluten free breads: Interaction between inulin and yeast

Inulin can improve the nutritional quality of gluten free (GF) bread and have a prebiotic activity. However, breadmaking might frustrate the enrichments efforts due to inulin loss. In this study we aimed at studying the inulin enrichment of GF bread. Two different yeasts [having normal (Y1) or reduced (Y2) invertase activity] were used to leaven the breads enriched with five marketed inulins, which differed for the degree of polymerization (DP) and the manufacturer. Inulin replaced 10% of the rice flour and had low, intermediate or high DP, which ranged from 2 to 20; ≈20; ≥20, respectively. Fructan hydrolysis occurred during leavening of Y1-GF breads, reaching losses up to 40% after baking, depending on the diverse DP of the inulin-forming fructans. Inulin loss was less relevant in Y2-GF breads (up to 5% after baking) than Y1-GF breads. Crumb texture was not negatively influenced by inulin presence, even if this was high (e.g., Y2-GF breads). Information collected within this study may provide further insight to better optimize a GF bread formulation in view of inulin enrichment.

Saved in:
Bibliographic Details
Main Authors: Morreale, Federico, Benavent Gil, Yaiza, Rosell, Cristina M.
Other Authors: Ministerio de Economía y Competitividad (España)
Format: artículo biblioteca
Language:English
Published: Elsevier 2018-11-13
Subjects:Inulin, Fructans, Gluten free, Bread, Yeast, Invertase activity,
Online Access:http://hdl.handle.net/10261/180215
http://dx.doi.org/10.13039/501100003329
http://dx.doi.org/10.13039/501100000780
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Inulin can improve the nutritional quality of gluten free (GF) bread and have a prebiotic activity. However, breadmaking might frustrate the enrichments efforts due to inulin loss. In this study we aimed at studying the inulin enrichment of GF bread. Two different yeasts [having normal (Y1) or reduced (Y2) invertase activity] were used to leaven the breads enriched with five marketed inulins, which differed for the degree of polymerization (DP) and the manufacturer. Inulin replaced 10% of the rice flour and had low, intermediate or high DP, which ranged from 2 to 20; ≈20; ≥20, respectively. Fructan hydrolysis occurred during leavening of Y1-GF breads, reaching losses up to 40% after baking, depending on the diverse DP of the inulin-forming fructans. Inulin loss was less relevant in Y2-GF breads (up to 5% after baking) than Y1-GF breads. Crumb texture was not negatively influenced by inulin presence, even if this was high (e.g., Y2-GF breads). Information collected within this study may provide further insight to better optimize a GF bread formulation in view of inulin enrichment.