The Aspergillus nidulans Zn(II)2Cys6 transcription factor AN5673/RhaR mediates L-rhamnose utilization and the production of α-L-rhamnosidases
[Background] Various plant-derived substrates contain L-rhamnose that can be assimilated by many fungi and its liberation is catalyzed by α-L-rhamnosidases. Initial data obtained in our laboratory focussing on two Aspergillus nidulans α-L-rhamnosidase genes (rhaA and rhaE) showed α-L-rhamnosidase production to be tightly controlled at the level of transcription by the carbon source available. Whilst induction is effected by L-rhamnose, unlike many other glycosyl hydrolase genes repression by glucose and other carbon sources occurs in a manner independent of CreA. To date regulatory genes affecting L-rhamnose utilization and the production of enzymes that yield L-rhamnose as a product have not been identified in A. nidulans. The purpose of the present study is to characterize the corresponding α-L-rhamnosidase transactivator.
Main Authors: | , |
---|---|
Other Authors: | |
Format: | artículo biblioteca |
Language: | English |
Published: |
BioMed Central
2014-11-22
|
Subjects: | α-L-rhamnosidases, Aspergillus nidulans, AN5673/rhaR, L-rhamnose metabolic pathway, LRA gene cluster, AN5672/lraC, Neurospora crassa, NCU9033/rhaR, non-radioactive EMSA, TF knockout, |
Online Access: | http://hdl.handle.net/10261/109590 http://dx.doi.org/10.13039/501100003329 http://dx.doi.org/10.13039/501100003339 http://dx.doi.org/10.13039/501100000780 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Background] Various plant-derived substrates contain L-rhamnose that can be assimilated by many fungi and its liberation is catalyzed by α-L-rhamnosidases. Initial data obtained in our laboratory focussing on two Aspergillus nidulans α-L-rhamnosidase genes (rhaA and rhaE) showed α-L-rhamnosidase production to be tightly controlled at the level of transcription by the carbon source available. Whilst induction is effected by L-rhamnose, unlike many other glycosyl hydrolase genes repression by glucose and other carbon sources occurs in a manner independent of CreA. To date regulatory genes affecting L-rhamnose utilization and the production of enzymes that yield L-rhamnose as a product have not been identified in A. nidulans. The purpose of the present study is to characterize the corresponding α-L-rhamnosidase transactivator. |
---|