Model inversion for chlorophyll estimation in open canopies from hyperspectral imagery

This paper presents the results of estimation of leaf chlorophyll concentration through model inversion, from hyperspectral imagery of artificially treated orchard crops. The objectives were to examine model inversion robustness under changing viewing conditions, and the potential of multi-angle hyperspectral data to improve accuracy of chlorophyll estimation. The results were compared with leaf chlorophyll measurements from laboratory analysis and field spectroscopy. Two state-of-the-art canopy models were compared. The first is a turbid medium canopy reflectance model (MCRM) and the second is a 3D model (FLIGHT). Both were linked to the PROSPECT leaf model. A linear regression using a single band was also performed as a reference. The different techniques were able to detect nutrient deficiencies that caused stress from the hyperspectral data obtained from the airborne AHS sensor. However, quantitative chlorophyll retrieval was found largely dependent on viewing conditions for regression and the turbid medium model inversion. In contrast, the 3D model was successful for all observations. It offers a robust technique to extract chlorophyll quantitatively from airborne hyperspectral data. When multi-angular data were combined, the results for both the turbid medium and 3D model increased. Final RMSE values of 5.8 mg cm-2 (MCRM) and 4.7 mg cm-2 (FLIGHT) were obtained for chlorophyll retrieval on canopy level.

Saved in:
Bibliographic Details
Main Authors: Kempeneers, P., Zarco-Tejada, Pablo J., North, Peter R. J., Backer, Steve de, Delalieux, S., Sepulcre-Cantó, G., Morales, Fermín, Aardt, J. A. N. van, Sagardoy Calderón, Ruth, Coppin, P., Scheunders, P.
Format: artículo biblioteca
Language:English
Published: Taylor & Francis 2008
Subjects:Chlorophyll estimation, Model inversion,
Online Access:http://hdl.handle.net/10261/9750
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents the results of estimation of leaf chlorophyll concentration through model inversion, from hyperspectral imagery of artificially treated orchard crops. The objectives were to examine model inversion robustness under changing viewing conditions, and the potential of multi-angle hyperspectral data to improve accuracy of chlorophyll estimation. The results were compared with leaf chlorophyll measurements from laboratory analysis and field spectroscopy. Two state-of-the-art canopy models were compared. The first is a turbid medium canopy reflectance model (MCRM) and the second is a 3D model (FLIGHT). Both were linked to the PROSPECT leaf model. A linear regression using a single band was also performed as a reference. The different techniques were able to detect nutrient deficiencies that caused stress from the hyperspectral data obtained from the airborne AHS sensor. However, quantitative chlorophyll retrieval was found largely dependent on viewing conditions for regression and the turbid medium model inversion. In contrast, the 3D model was successful for all observations. It offers a robust technique to extract chlorophyll quantitatively from airborne hyperspectral data. When multi-angular data were combined, the results for both the turbid medium and 3D model increased. Final RMSE values of 5.8 mg cm-2 (MCRM) and 4.7 mg cm-2 (FLIGHT) were obtained for chlorophyll retrieval on canopy level.