Next-generation bioinformatics: Using many-core processor architecture to develop a web service for sequence alignment

Motivation: Bioinformatics algorithms and computing power are the main bottlenecks for analyzing huge amount of data generated by the current technologies, such as the 'next-generation' sequencing methodologies. At the same time, most powerful microprocessors are based on many-core chips, yet most applications cannot exploit such power, requiring parallelized algorithms. As an example of next-generation bioinformatics, we have developed from scratch a new parallelization of the Needleman-Wunsch (NW) sequence alignment algorithm for the 64-core Tile64 microprocessor. The unprecedented performance it offers for a standalone personal computer (PC) is discussed, optimally aligning sequences up to 20 times faster than the non-parallelized version, thus saving valuable time. Availability: This algorithm is available as a free web service for the scientific community at http://www.sicuma.uma.es/multicore. The open source code is also available on such site. Contact: galvez@uma.es Supplementary information: Supplementary data are available at Bioinformatics online. © The Author 2010. Published by Oxford University Press.

Saved in:
Bibliographic Details
Main Authors: Gálvez, Sergio, Díaz, David, Hernández Molina, Pilar, Esteban, Francisco J., Caballero, Juan Antonio, Dorado, Gabriel
Other Authors: Ministerio de Ciencia e Innovación (España)
Format: artículo biblioteca
Language:Spanish / Castilian
Published: Oxford University Press 2010-01-16
Online Access:http://hdl.handle.net/10261/90166
http://dx.doi.org/10.13039/501100004837
http://dx.doi.org/10.13039/501100011011
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Motivation: Bioinformatics algorithms and computing power are the main bottlenecks for analyzing huge amount of data generated by the current technologies, such as the 'next-generation' sequencing methodologies. At the same time, most powerful microprocessors are based on many-core chips, yet most applications cannot exploit such power, requiring parallelized algorithms. As an example of next-generation bioinformatics, we have developed from scratch a new parallelization of the Needleman-Wunsch (NW) sequence alignment algorithm for the 64-core Tile64 microprocessor. The unprecedented performance it offers for a standalone personal computer (PC) is discussed, optimally aligning sequences up to 20 times faster than the non-parallelized version, thus saving valuable time. Availability: This algorithm is available as a free web service for the scientific community at http://www.sicuma.uma.es/multicore. The open source code is also available on such site. Contact: galvez@uma.es Supplementary information: Supplementary data are available at Bioinformatics online. © The Author 2010. Published by Oxford University Press.