Future prospects for ascochyta blight resistance breeding in cool season food legumes

Legume cultivation is strongly hampered by the occurrence of ascochyta blights. Strategies of control have been developed but only marginal successes achieved. Breeding for disease resistance is regarded the most cost efficient method of control. Significant genetic variation for disease resistance exists in most legume crops with numerous germplasm lines maintained, providing an excellent resource for plant breeders. Fast and reliable screening methods have been adjusted to fulfill breeding program needs. However, the complex inheritance controlled quantitatively by multiple genes, has been difficult to manipulate. Successful application of biotechnology to ascochyta blight resistance breeding in legume crops will facilitate a good biological knowledge both of the crops–pathogen interaction and of the mechanisms underlying resistance. The current focus in applied breeding is leveraging biotechnological tools to develop more and better markers to speed up the delivery of improved cultivars to the farmer. To date, however, progress in marker development and delivery of useful markers has been slow in most legumes. The limited saturation of the genomic regions bearing putative QTLs in legume crops makes difficult to identify the most tightly linked markers and to determine the accurate position of QTLs. The application of next generation sequencing technologies will contribute to the development of new markers and the identification of candidate genes for ascochyta blight resistance.

Saved in:
Bibliographic Details
Main Authors: Rubiales, Diego, Fondevilla, Sara
Format: artículo biblioteca
Language:Spanish / Castilian
Published: Frontiers Media 2012-02-07
Online Access:http://hdl.handle.net/10261/83863
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Legume cultivation is strongly hampered by the occurrence of ascochyta blights. Strategies of control have been developed but only marginal successes achieved. Breeding for disease resistance is regarded the most cost efficient method of control. Significant genetic variation for disease resistance exists in most legume crops with numerous germplasm lines maintained, providing an excellent resource for plant breeders. Fast and reliable screening methods have been adjusted to fulfill breeding program needs. However, the complex inheritance controlled quantitatively by multiple genes, has been difficult to manipulate. Successful application of biotechnology to ascochyta blight resistance breeding in legume crops will facilitate a good biological knowledge both of the crops–pathogen interaction and of the mechanisms underlying resistance. The current focus in applied breeding is leveraging biotechnological tools to develop more and better markers to speed up the delivery of improved cultivars to the farmer. To date, however, progress in marker development and delivery of useful markers has been slow in most legumes. The limited saturation of the genomic regions bearing putative QTLs in legume crops makes difficult to identify the most tightly linked markers and to determine the accurate position of QTLs. The application of next generation sequencing technologies will contribute to the development of new markers and the identification of candidate genes for ascochyta blight resistance.