Validation and comparison of two soil-vegetation-atmosphere transfer models for tropical Africa

This study aims to compare and validate two soil-vegetation-atmosphere-transfer (SVAT) schemes: TERRA-ML and the Community Land Model (CLM). Both SVAT schemes are run in standalone mode (decoupled from an atmospheric model) and forced with meteorological in-situ measurements obtained at several tropical African sites. Model performance is quantified by comparing simulated sensible and latent heat fluxes with eddy-covariance measurements. Our analysis indicates that the Community Land Model corresponds more closely to the micrometeorological observations, reflecting the advantages of the higher model complexity and physical realism. Deficiencies in TERRA-ML are addressed and its performance is improved: (1) adjusting input data (root depth) to region-specific values (tropical evergreen forest) resolves dry-season underestimation of evapotranspiration; (2) adjusting the leaf area index and albedo (depending on hard-coded model constants) resolves overestimations of both latent and sensible heat fluxes; and (3) an unrealistic flux partitioning caused by overestimated superficial water contents is reduced by adjusting the hydraulic conductivity parameterization. CLM is by default more versatile in its global application on different vegetation types and climates. On the other hand, with its lower degree of complexity, TERRA-ML is much less computationally demanding, which leads to faster calculation times in a coupled climate simulation.

Saved in:
Bibliographic Details
Main Authors: Akkermans, T., Lauwaet, D., Demuzere, M., Vogel, G., Nouvellon, Yann, Ardö, Junas, Caquet, B., De Grandcourt, Agnès, Merbold, L., Kutsch, Werner L., Van Lipzig, N.P.M.
Format: article biblioteca
Language:eng
Published: Wiley
Subjects:U10 - Informatique, mathématiques et statistiques, F40 - Écologie végétale, P33 - Chimie et physique du sol, F62 - Physiologie végétale - Croissance et développement, modèle de simulation, relation plante sol, zone tropicale, sol, végétation, atmosphère, développement biologique, facteur climatique, interactions biologiques, surface foliaire, évapotranspiration, système racinaire, teneur en eau, albedo (solaire), modèle mathématique, conditions météorologiques, http://aims.fao.org/aos/agrovoc/c_24242, http://aims.fao.org/aos/agrovoc/c_16146, http://aims.fao.org/aos/agrovoc/c_7979, http://aims.fao.org/aos/agrovoc/c_7156, http://aims.fao.org/aos/agrovoc/c_8176, http://aims.fao.org/aos/agrovoc/c_8994, http://aims.fao.org/aos/agrovoc/c_921, http://aims.fao.org/aos/agrovoc/c_29554, http://aims.fao.org/aos/agrovoc/c_49896, http://aims.fao.org/aos/agrovoc/c_16110, http://aims.fao.org/aos/agrovoc/c_2741, http://aims.fao.org/aos/agrovoc/c_16034, http://aims.fao.org/aos/agrovoc/c_4886, http://aims.fao.org/aos/agrovoc/c_242, http://aims.fao.org/aos/agrovoc/c_24199, http://aims.fao.org/aos/agrovoc/c_29565, http://aims.fao.org/aos/agrovoc/c_1811, http://aims.fao.org/aos/agrovoc/c_8501, http://aims.fao.org/aos/agrovoc/c_7497,
Online Access:http://agritrop.cirad.fr/565086/
http://agritrop.cirad.fr/565086/1/document_565086.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aims to compare and validate two soil-vegetation-atmosphere-transfer (SVAT) schemes: TERRA-ML and the Community Land Model (CLM). Both SVAT schemes are run in standalone mode (decoupled from an atmospheric model) and forced with meteorological in-situ measurements obtained at several tropical African sites. Model performance is quantified by comparing simulated sensible and latent heat fluxes with eddy-covariance measurements. Our analysis indicates that the Community Land Model corresponds more closely to the micrometeorological observations, reflecting the advantages of the higher model complexity and physical realism. Deficiencies in TERRA-ML are addressed and its performance is improved: (1) adjusting input data (root depth) to region-specific values (tropical evergreen forest) resolves dry-season underestimation of evapotranspiration; (2) adjusting the leaf area index and albedo (depending on hard-coded model constants) resolves overestimations of both latent and sensible heat fluxes; and (3) an unrealistic flux partitioning caused by overestimated superficial water contents is reduced by adjusting the hydraulic conductivity parameterization. CLM is by default more versatile in its global application on different vegetation types and climates. On the other hand, with its lower degree of complexity, TERRA-ML is much less computationally demanding, which leads to faster calculation times in a coupled climate simulation.