Multi-temporal observations of sugarcane by Terrasar-X images

The objective of this study is to investigate the potential of TerraSAR-X (X-band) in monitoring sugarcane growth on Reunion Island. Multi-temporal TerraSAR data acquired at various incidence angles (17°, 31°, 37°, 47°, 58°) and polarizations (HH, HV, VV) were analyzed in order to study the behaviour of SAR (synthetic aperture radar) signal as a function of sugarcane height. The potential of TerraSAR for mapping the sugarcane harvest was also studied. Radar signal increased quickly with crop height until a threshold height, which depended on polarization and incidence angle. Beyond this threshold, the signal increased only slightly, remained constant, or even decreased. The threshold height is slightly higher with cross polarization and higher incidence angles (47° in comparison with 17° and 31°). TerraSAR data showed that after strong rains the soil contribution for the backscattering of sugarcane fields can be consequent for canes with heights of terminal visible dewlap (htvd) less than 50cm (total cane heights around 155cm). Finally, TerraSAR data at high spatial resolution were shown to be useful for monitoring sugarcane harvest when the fields are of small size or when the cut is spread out in time. The comparison between incidences of 17°, 37° and 58° shows that 37° is more suitable to monitor the sugarcane harvest. The cut is easily detectable on TerraSAR images for data acquired less than two or three months after the cut. The radar signal decreases of about 5dB for images acquired some days after the cut and of 3dB for data acquired two month after the cut (VV-37°). The difference in radar signal becomes negligible (<1dB) between harvested fields and mature canes for sugarcane harvested since three months or more.

Saved in:
Bibliographic Details
Main Authors: Baghdadi, Nicolas, Todoroff, Pierre, Rabaute, Thierry, Tinel, Claire
Format: conference_item biblioteca
Language:eng
Published: s.n.
Subjects:U30 - Méthodes de recherche, F01 - Culture des plantes, F62 - Physiologie végétale - Croissance et développement, Saccharum officinarum, radar, surveillance des cultures, récolte, télédétection, http://aims.fao.org/aos/agrovoc/c_6727, http://aims.fao.org/aos/agrovoc/c_24071, http://aims.fao.org/aos/agrovoc/c_37838, http://aims.fao.org/aos/agrovoc/c_3500, http://aims.fao.org/aos/agrovoc/c_6498, http://aims.fao.org/aos/agrovoc/c_6543, http://aims.fao.org/aos/agrovoc/c_3081,
Online Access:http://agritrop.cirad.fr/561708/
http://agritrop.cirad.fr/561708/1/document_561708.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this study is to investigate the potential of TerraSAR-X (X-band) in monitoring sugarcane growth on Reunion Island. Multi-temporal TerraSAR data acquired at various incidence angles (17°, 31°, 37°, 47°, 58°) and polarizations (HH, HV, VV) were analyzed in order to study the behaviour of SAR (synthetic aperture radar) signal as a function of sugarcane height. The potential of TerraSAR for mapping the sugarcane harvest was also studied. Radar signal increased quickly with crop height until a threshold height, which depended on polarization and incidence angle. Beyond this threshold, the signal increased only slightly, remained constant, or even decreased. The threshold height is slightly higher with cross polarization and higher incidence angles (47° in comparison with 17° and 31°). TerraSAR data showed that after strong rains the soil contribution for the backscattering of sugarcane fields can be consequent for canes with heights of terminal visible dewlap (htvd) less than 50cm (total cane heights around 155cm). Finally, TerraSAR data at high spatial resolution were shown to be useful for monitoring sugarcane harvest when the fields are of small size or when the cut is spread out in time. The comparison between incidences of 17°, 37° and 58° shows that 37° is more suitable to monitor the sugarcane harvest. The cut is easily detectable on TerraSAR images for data acquired less than two or three months after the cut. The radar signal decreases of about 5dB for images acquired some days after the cut and of 3dB for data acquired two month after the cut (VV-37°). The difference in radar signal becomes negligible (<1dB) between harvested fields and mature canes for sugarcane harvested since three months or more.