Trait-QTL-heritability of grain yield and other agronomic traits under low nitrogen conditions in bi-parental maize populations
Limited or low Nitrogen is a wanting abiotic stress in maize mainly in Sub-Sahara Africa, affecting yields and quality development of maize crop. As an approach to getting a breeding solution; mapping of QTLs and understanding the heritability factor can provide useful information and guide for breeders in developing low nitrogen resilient maize. QTL mapping which is a molecular breeding component forms an actual basis in estimation of genomic regions associated to the expression of quantitative traits, and how heritable are such traits. Conducting a selection for Low N-tolerance is challenging due to its complex nature with strong interaction between genotypes and environments; therefore, marker assisted breeding is key to improving such complex traits, but at the same time requires markers associated with the trait of interest. In this study, three bi-parental populations were subjected to either or both low and optimum N conditions to detect and determine the QTLs heritability for grain yield and other agronomic traits. Essential to the study; genotype by environmental interaction, significance and heritability was examined for each population with most traits expressing low (<0.2) and moderate to high heritabilities (0.3>). These QTLs with high heritabilities across environments will be of great value for rapid introgression into maize populations using marker assisted selection approach. The study was a preliminary and therefore require further validation on heritability and fine mapping for them to be useful in MAS.
Main Authors: | , , |
---|---|
Format: | Article biblioteca |
Language: | English |
Published: |
Scientific Research Archives
2021
|
Subjects: | AGRICULTURAL SCIENCES AND BIOTECHNOLOGY, QTL Mapping, Grain Yield, Low Nitrogen Conditions, HERITABILITY, QUANTITATIVE TRAIT LOCI, CHROMOSOME MAPPING, YIELDS, NITROGEN, |
Online Access: | https://hdl.handle.net/10883/21901 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Limited or low Nitrogen is a wanting abiotic stress in maize mainly in Sub-Sahara Africa, affecting yields and quality development of maize crop. As an approach to getting a breeding solution; mapping of QTLs and understanding the heritability factor can provide useful information and guide for breeders in developing low nitrogen resilient maize. QTL mapping which is a molecular breeding component forms an actual basis in estimation of genomic regions associated to the expression of quantitative traits, and how heritable are such traits. Conducting a selection for Low N-tolerance is challenging due to its complex nature with strong interaction between genotypes and environments; therefore, marker assisted breeding is key to improving such complex traits, but at the same time requires markers associated with the trait of interest. In this study, three bi-parental populations were subjected to either or both low and optimum N conditions to detect and determine the QTLs heritability for grain yield and other agronomic traits. Essential to the study; genotype by environmental interaction, significance and heritability was examined for each population with most traits expressing low (<0.2) and moderate to high heritabilities (0.3>). These QTLs with high heritabilities across environments will be of great value for rapid introgression into maize populations using marker assisted selection approach. The study was a preliminary and therefore require further validation on heritability and fine mapping for them to be useful in MAS. |
---|