Is deficit irrigation with saline waters a viable alternative for winegrowers in semiarid areas?

Two of the main challenges of Mediterranean viticulture is low water quality and the risk of increasing concentrations of mineral salts in the root zone. This work was undertaken to study the impact of saline deficit irrigation on grape and wine phenolic composition, as well as on the sensory profile of the wines. The experiment was carried out during three consecutive years (2016-2018) in a commercial vineyard of cv. Monastrell (Vitis vinifera L.) grafted onto 1103P rootstock located in D.O. Jumilla (SE Spain). Three watering regimes were carried out: i) the control (“Control”): the vines were irrigated with water of standard quality, ii) Sulfate treatment (“Sul”): the vines were irrigated with saline water (Na₂SO₄ + MgSO4), and iii) Chloride treatment (“Chl”): the vines were irrigated with saline water (NaCl). The same amount of irrigation water was applied to all the treatments. The water electrical conductivity was 1.8 dS/m for Control and 5 dS/m for the saline treatments (Sul and Chl). Both the Sul and Chl treatments reduced the berry weight in all the study years compared to Control, although this difference was statistically significant in the last year only (p ≤ 0.05). No significant differences (p > 0.05) were observed in the grape quality parameters. However, the saline treatments slightly increased grape total soluble solids (TSS) in two out of the three study years compared to Control. Regarding the phenolic composition, no significant differences (p > 0.05) among treatments were found in grapes and wines. In general, the wines from vines irrigated with saline waters received the best scores by the panel in the sensory profile analysis. The use of saline waters could be employed in the case of water scarcity, as long as the vineyard is planted on a rootstock tolerant to salinity, such as 1103P, and the vineyard soil has a texture that favours leaching.

Saved in:
Bibliographic Details
Main Authors: Martínez-Moreno, Alejandro, Pérez-Álvarez, Eva Pilar, López-Urrea, Ramón, Intrigliolo, Diego S., González-Centeno, M. Reyes, Teissedre, Pierre-Louis, Gil-Muñoz, Rocío
Other Authors: Ministerio de Ciencia, Innovación y Universidades (España)
Format: artículo biblioteca
Published: International Viticulture and Enology Society 2022
Subjects:Vitis vinifera, Monastrell, Anthocyanins, Phenolic compounds, Salinity,
Online Access:http://hdl.handle.net/10261/284407
http://dx.doi.org/10.13039/501100011033
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two of the main challenges of Mediterranean viticulture is low water quality and the risk of increasing concentrations of mineral salts in the root zone. This work was undertaken to study the impact of saline deficit irrigation on grape and wine phenolic composition, as well as on the sensory profile of the wines. The experiment was carried out during three consecutive years (2016-2018) in a commercial vineyard of cv. Monastrell (Vitis vinifera L.) grafted onto 1103P rootstock located in D.O. Jumilla (SE Spain). Three watering regimes were carried out: i) the control (“Control”): the vines were irrigated with water of standard quality, ii) Sulfate treatment (“Sul”): the vines were irrigated with saline water (Na₂SO₄ + MgSO4), and iii) Chloride treatment (“Chl”): the vines were irrigated with saline water (NaCl). The same amount of irrigation water was applied to all the treatments. The water electrical conductivity was 1.8 dS/m for Control and 5 dS/m for the saline treatments (Sul and Chl). Both the Sul and Chl treatments reduced the berry weight in all the study years compared to Control, although this difference was statistically significant in the last year only (p ≤ 0.05). No significant differences (p > 0.05) were observed in the grape quality parameters. However, the saline treatments slightly increased grape total soluble solids (TSS) in two out of the three study years compared to Control. Regarding the phenolic composition, no significant differences (p > 0.05) among treatments were found in grapes and wines. In general, the wines from vines irrigated with saline waters received the best scores by the panel in the sensory profile analysis. The use of saline waters could be employed in the case of water scarcity, as long as the vineyard is planted on a rootstock tolerant to salinity, such as 1103P, and the vineyard soil has a texture that favours leaching.