Biogeography and evolution of seeder and resprouter forms of Erica coccinea (Ericaceae) in the fire-prone Cape fynbos
The genus Erica represents the epitome of plant biodiversity in the South African Cape fynbos with over 700 species. This genus is composed of seeder and resprouter species, but both species diversity and endemism are strongly linked to the seeder habit and concentrated in the southwestern Cape Floristic Region (CFR). Erica coccinea is a relatively abundant and widespread fynbos species whose most remarkable morphological feature is the existence of distinct seeder and resprouter forms, frequently—but not always—in disjunct populations. Both higher within-population genetic diversity and among-population differentiation have been found in seeders, most likely as a consequence of the shorter generation times and faster population turnovers. Resprouters, despite being less diverse, are suspected to be ancestral. However, no solid evidence has yet been provided for the ancestrality of the resprouter form, or for the demographic processes that have determined the current distribution of genetic diversity in both regeneration forms. Here, we used microsatellites and sequences of the nuclear ribosomal internal transcribed spacers to describe the phylogeographic structure of seeder and resprouter E. coccinea populations and provide good evidence for the ancestral status of the resprouter form and the comparatively high rates of molecular evolution in derived seeder populations. We also reveal that mixed populations, where both seeder and resprouter individuals co-occur, were originated by secondary contacts. This study highlights the role of fire in driving accelerated diversification in seeder lineages of highly speciose CFR fynbos taxa.
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | artículo biblioteca |
Published: |
Springer
2016-06
|
Subjects: | Post-fire regeneration, Internal transcribed spacers, Life-history traits, Molecular evolutionary rates, Fynbos biodiversity, |
Online Access: | http://hdl.handle.net/10261/141067 http://dx.doi.org/10.13039/501100003176 http://dx.doi.org/10.13039/501100003329 http://dx.doi.org/10.13039/501100000780 http://dx.doi.org/10.13039/501100004837 http://dx.doi.org/10.13039/501100008723 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The genus Erica represents the epitome of plant biodiversity in the South African Cape fynbos with over 700 species. This genus is composed of seeder and resprouter species, but both species diversity and endemism are strongly linked to the seeder habit and concentrated in the southwestern Cape Floristic Region (CFR). Erica coccinea is a relatively abundant and widespread fynbos species whose most remarkable morphological feature is the existence of distinct seeder and resprouter forms, frequently—but not always—in disjunct populations. Both higher within-population genetic diversity and among-population differentiation have been found in seeders, most likely as a consequence of the shorter generation times and faster population turnovers. Resprouters, despite being less diverse, are suspected to be ancestral. However, no solid evidence has yet been provided for the ancestrality of the resprouter form, or for the demographic processes that have determined the current distribution of genetic diversity in both regeneration forms. Here, we used microsatellites and sequences of the nuclear ribosomal internal transcribed spacers to describe the phylogeographic structure of seeder and resprouter E. coccinea populations and provide good evidence for the ancestral status of the resprouter form and the comparatively high rates of molecular evolution in derived seeder populations. We also reveal that mixed populations, where both seeder and resprouter individuals co-occur, were originated by secondary contacts. This study highlights the role of fire in driving accelerated diversification in seeder lineages of highly speciose CFR fynbos taxa. |
---|