Estimating the underwater shape of tuna longlines with micro-bathythermographs

An estimation method for the three-dimensional underwater shape of tuna longlines is developed, using measurements of depth obtained from micro-bathythermographs (BTs) attached to the main line at equally spaced intervals. The shape of the main line is approximated by a model which consists of a chain of unit length lines (folding-rule model), where the junction points are placed at the observed depths. Among the infinite number of possible shapes, the most likely shape is considered to be the smoothest one that can be obtained with a numerical optimization algorithm. To validate the method, a series of experimental longline operations were conducted in the equatorial region of the eastern Pacific Ocean, using 13 or 14 micro-BTs per basket of main line. Concurrent observations of oceanographic conditions (currents and temperature structure) were obtained. The shape of the main line can be calculated at arbitrary times during operations. Shapes were consistent with the current structure. On the equator, the line was elevated significantly by the Equatorial Undercurrent. It is shown that the shape of main line depends primarily upon the vertical shear and direction of the current relative to the gear. Time sequences of calculated shapes reveals that observed periodic (1-2 hours) oscillations in depth of the gear was caused by swinging movements of the main line. The shortening rate of the main line is an important parameter for formulating the shape of the longline, and its precise measurement is desirable.

Saved in:
Bibliographic Details
Other Authors: Mizuno, Keisuke
Format: monograph biblioteca
Language:English
Published: Inter-American Tropical Tuna Commission 1999
Subjects:Fisheries,
Online Access:http://hdl.handle.net/1834/23200
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An estimation method for the three-dimensional underwater shape of tuna longlines is developed, using measurements of depth obtained from micro-bathythermographs (BTs) attached to the main line at equally spaced intervals. The shape of the main line is approximated by a model which consists of a chain of unit length lines (folding-rule model), where the junction points are placed at the observed depths. Among the infinite number of possible shapes, the most likely shape is considered to be the smoothest one that can be obtained with a numerical optimization algorithm. To validate the method, a series of experimental longline operations were conducted in the equatorial region of the eastern Pacific Ocean, using 13 or 14 micro-BTs per basket of main line. Concurrent observations of oceanographic conditions (currents and temperature structure) were obtained. The shape of the main line can be calculated at arbitrary times during operations. Shapes were consistent with the current structure. On the equator, the line was elevated significantly by the Equatorial Undercurrent. It is shown that the shape of main line depends primarily upon the vertical shear and direction of the current relative to the gear. Time sequences of calculated shapes reveals that observed periodic (1-2 hours) oscillations in depth of the gear was caused by swinging movements of the main line. The shortening rate of the main line is an important parameter for formulating the shape of the longline, and its precise measurement is desirable.