Acoustic measurement and modeling of the vertical distribution of suspended sediment driven by waves and currents (M.S. Engineering Thesis)
With the rapid growth and development of barrier islands, understanding the long-termstability of these islands is an integral part of future coastal planning. The overwash process isthe largest influence on the long-term stability of these islands and thus a correspondingunderstanding is of major importance. A laboratory experiment was undertaken to physicallymodel the wave and current forcing as they pertain to the overwash process. The physical modelwas subjected to various storm conditions common to the occurrence of the overwash.Combinations of wave height, wave period, and overwash depth were tested in an attempt toisolate the significant parameters. Water surface gradients were also applied to observe theirinfluence on the overwash process. Wave height, current, and bed profile measurements weretaken at different locations throughout the tank. In addition, wave height transformationmodeling and mean current prediction were performed and compared to the laboratory results inan attempt to model the overwash process through computer simulations. (Document has 132 pages)
Main Author: | |
---|---|
Format: | monograph biblioteca |
Language: | English |
Published: |
University of Florida. Department of Coastal and Oceanographic Engineering
1992
|
Subjects: | Oceanography, Engineering, Barrier islands, storms, overwash, |
Online Access: | http://hdl.handle.net/1834/18415 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With the rapid growth and development of barrier islands, understanding the long-termstability of these islands is an integral part of future coastal planning. The overwash process isthe largest influence on the long-term stability of these islands and thus a correspondingunderstanding is of major importance. A laboratory experiment was undertaken to physicallymodel the wave and current forcing as they pertain to the overwash process. The physical modelwas subjected to various storm conditions common to the occurrence of the overwash.Combinations of wave height, wave period, and overwash depth were tested in an attempt toisolate the significant parameters. Water surface gradients were also applied to observe theirinfluence on the overwash process. Wave height, current, and bed profile measurements weretaken at different locations throughout the tank. In addition, wave height transformationmodeling and mean current prediction were performed and compared to the laboratory results inan attempt to model the overwash process through computer simulations. (Document has 132 pages) |
---|