Artificial neural networks in the classification and identification of soybean cultivars by planting region.

Vinte variedades de soja (Glycine max), quatorze convencionais e seis variedades transgênicas (RR) foram analisadas quanto ao teor de proteína, ácido fítico, teor de óleo, fitosteróis, cinzas, minerais e ácidos graxos que foram tabelados e apresentados à rede neural do tipo perceptron de múltiplas camadas para a classificação e identificação quanto a região de plantio e quanto a variedade convencional ou transgênica. A rede neural utilizada classificou e testou corretamente 100% das amostras cultivadas por região. Para o banco de dados contendo informações sobre sojas transgênicas e convencionais foi obtido um desempenho de 94,43% no treinamento da rede, 83,30% no teste e 100% na validação.

Saved in:
Bibliographic Details
Main Authors: GALÃO, O. F., BORSATO, D., PINTO, J. P., VISENTAINER, J. V., CARRÃO-PANIZZI, M. C.
Other Authors: OLÍVIO F. GALÃO, UEL; DIONÍSIO BORSATO, UEL; JURANDIR P. PINTO, UEL; JESUÍ V. VISENTAINER, UEM; MERCEDES CONCORDIA CARRÃO-PANIZZI, CNPT.
Format: Artigo de periódico biblioteca
Language:English
eng
Published: 2011-10-21T11:11:11Z
Subjects:Rede neural do tipo perceptron, Fitosteróis, Multilayer perceptron neural networks,
Online Access:http://www.alice.cnptia.embrapa.br/alice/handle/doc/903708
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Vinte variedades de soja (Glycine max), quatorze convencionais e seis variedades transgênicas (RR) foram analisadas quanto ao teor de proteína, ácido fítico, teor de óleo, fitosteróis, cinzas, minerais e ácidos graxos que foram tabelados e apresentados à rede neural do tipo perceptron de múltiplas camadas para a classificação e identificação quanto a região de plantio e quanto a variedade convencional ou transgênica. A rede neural utilizada classificou e testou corretamente 100% das amostras cultivadas por região. Para o banco de dados contendo informações sobre sojas transgênicas e convencionais foi obtido um desempenho de 94,43% no treinamento da rede, 83,30% no teste e 100% na validação.