Medição de qualidade de sementes de canola com visão computacional e aprendizado de máquina.

Produtos originados dos grãos da canola, como óleo, farinha e biodiesel, são diretamente afetados pela qualidade desses grãos. O uso da tecnologia tem contribuído para a identificação dos grãos impuros ou em estágios diferentes de maturidade. A visão computacional em conjunto com o aprendizado de máquina pode gerar ferramentas capazes de avaliar a qualidade das sementes de forma não invasiva, sem destruir amostras e com baixo custo, uma vez que utiliza imagens digitais como insumo. O presente estudo propõe o uso de visão computacional e aprendizado não supervisionado de máquina para análise de sementes de canola a partir de imagens digitais, com o objetivo de contar, identificar cada semente e calcular o percentual de grãos maduros. Os resultados mostraram que o método K?Means pode ser usado para contar e identificar sementes de canola em fotografias com alta precisão. Na amostra, foram identificadas noventa e três sementes maduras, quatro verdes e três secas.

Saved in:
Bibliographic Details
Main Authors: SANTOS, W. R. dos, FALCAO, R.
Other Authors: WELLINGTON RANGEL DOS SANTOS, CNPAE; ROSANA FALCAO, CNPAE.
Format: Artigo em anais e proceedings biblioteca
Language:Portugues
pt_BR
Published: 2023-11-08
Subjects:Google Colaboratory, Semente, Qualidade, Canola, Python,
Online Access:http://www.alice.cnptia.embrapa.br/alice/handle/doc/1158058
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Produtos originados dos grãos da canola, como óleo, farinha e biodiesel, são diretamente afetados pela qualidade desses grãos. O uso da tecnologia tem contribuído para a identificação dos grãos impuros ou em estágios diferentes de maturidade. A visão computacional em conjunto com o aprendizado de máquina pode gerar ferramentas capazes de avaliar a qualidade das sementes de forma não invasiva, sem destruir amostras e com baixo custo, uma vez que utiliza imagens digitais como insumo. O presente estudo propõe o uso de visão computacional e aprendizado não supervisionado de máquina para análise de sementes de canola a partir de imagens digitais, com o objetivo de contar, identificar cada semente e calcular o percentual de grãos maduros. Os resultados mostraram que o método K?Means pode ser usado para contar e identificar sementes de canola em fotografias com alta precisão. Na amostra, foram identificadas noventa e três sementes maduras, quatro verdes e três secas.