Biochemical characterization of a Kunitz inhibitor from Inga edulis seeds with antifungal activity against Candida spp.
We describe the characterization of IETI, the first trypsin inhibitor purified from Inga edulis, a tree widely distributed in Brazil. Two-step chromatography was used to purify IETI, a protein composed of a single peptide chain of 19,685.10 Da. Amino-terminal sequencing revealed that IETI shows homology with the Kunitz family, as substantiated by its physical?chemical features, such as its thermal (up to 70 °C) and wide-range pH stability (from 2 to 10), and the value of its dissociation constant (6.2 nM). IETI contains a single reactive site for trypsin, maintained by a disulfide bridge; in the presence of DTT, its inhibitory activity was reduced in a time- and concentration-dependent manner. IETI presented activity against Candida ssp., including C. buinensis and C. tropicalis. IETI inhibitory activity triggered yeast membrane permeability, affecting cell viability, thus providing support for the use of IETI in further studies for the control of fungal infections.
Main Authors: | , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Artigo de periódico biblioteca |
Language: | pt_BR por |
Published: |
2019-02-18
|
Subjects: | Candida buinensis, Trypsin inhibitors, Membrane permeability, Candida tropicalis, |
Online Access: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1106185 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We describe the characterization of IETI, the first trypsin inhibitor purified from Inga edulis, a tree widely distributed in Brazil. Two-step chromatography was used to purify IETI, a protein composed of a single peptide chain of 19,685.10 Da. Amino-terminal sequencing revealed that IETI shows homology with the Kunitz family, as substantiated by its physical?chemical features, such as its thermal (up to 70 °C) and wide-range pH stability (from 2 to 10), and the value of its dissociation constant (6.2 nM). IETI contains a single reactive site for trypsin, maintained by a disulfide bridge; in the presence of DTT, its inhibitory activity was reduced in a time- and concentration-dependent manner. IETI presented activity against Candida ssp., including C. buinensis and C. tropicalis. IETI inhibitory activity triggered yeast membrane permeability, affecting cell viability, thus providing support for the use of IETI in further studies for the control of fungal infections. |
---|