Rapid and environmentally friendly wine analysis using Vis/NIR Spectroscopy and Support Vector Machine regression.

The aim of this study was to calibrate and validate models that can be used to determine quality parameters in red wine using Vis/NIR spectroscopy and the Least Squares Support Vector Machine (LS-SVM) regression.

Saved in:
Bibliographic Details
Main Authors: MARQUES, E. J. N., BIASOTO, A. C. T., FREITAS, S. T. de, MENEZES, T. R. de, PEREIRA, G. E., NASSUR, R. de C. M. R., MEDEIROS, E. P. de
Other Authors: EMANUEL JOSÉ NASCIMENTO MARQUES, UFPE; ALINE TELLES BIASOTO MARQUES, CPATSA; SERGIO TONETTO DE FREITAS, CPATSA; THIAGO REIS DE MENEZES; GIULIANO ELIAS PEREIRA, CNPUV / CPATSA; RITA DE CÁSSIA MIRELA RESENDE NASSUR; EVERALDO PAULO DE MEDEIROS, CNPA.
Format: Parte de livro biblioteca
Language:English
eng
Published: 2015-12-09
Subjects:Qualidade do vinho, Vis NIR, Parâmetro de qualidade, Vitivinicultura, Wine., Quality parameters, Uva, Vinho,
Online Access:http://www.alice.cnptia.embrapa.br/alice/handle/doc/1031129
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this study was to calibrate and validate models that can be used to determine quality parameters in red wine using Vis/NIR spectroscopy and the Least Squares Support Vector Machine (LS-SVM) regression.