Quantum Dynamical Semigroups and Applications [electronic resource] /

In this text the authors develop quantum dynamics of open systems for a wide class of irreversible processes starting from the concept of completely positive semigroups. This unified approach makes the material easily accessible to non-specialists and provides an easy access to practical applications. Written for graduate students, the book presents a wealth of useful examples; in particular, models of unstable and N-level systems are treated systematically and in considerable detail including new types of generated Bloch-equations. The general theory is extensively summarized from abstract dynamical maps to those obtained by a reduction of Hamiltonian dynamics under a Markovian approximation. Various methods of determining semigroup generators and the corresponding master equations are discussed including time-dependent and nonlinear generators. Further topics treated are a generalized H-theorem, quantum detailed balance and return to equilibrium, discrete quantum Boltzmann equation, nonlinear Schrödinger equation, spin relaxation by spin waves, entropy production and its generalization by a measure of irreversibiblity.

Saved in:
Bibliographic Details
Main Authors: Alicki, Robert. author., Lendi, Karl. author., SpringerLink (Online service)
Format: Texto biblioteca
Language:eng
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 1987
Subjects:Physics., Physical chemistry., Quantum physics., Quantum computers., Spintronics., Mathematical Methods in Physics., Numerical and Computational Physics., Quantum Information Technology, Spintronics., Quantum Physics., Physical Chemistry.,
Online Access:http://dx.doi.org/10.1007/3-540-18276-4
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this text the authors develop quantum dynamics of open systems for a wide class of irreversible processes starting from the concept of completely positive semigroups. This unified approach makes the material easily accessible to non-specialists and provides an easy access to practical applications. Written for graduate students, the book presents a wealth of useful examples; in particular, models of unstable and N-level systems are treated systematically and in considerable detail including new types of generated Bloch-equations. The general theory is extensively summarized from abstract dynamical maps to those obtained by a reduction of Hamiltonian dynamics under a Markovian approximation. Various methods of determining semigroup generators and the corresponding master equations are discussed including time-dependent and nonlinear generators. Further topics treated are a generalized H-theorem, quantum detailed balance and return to equilibrium, discrete quantum Boltzmann equation, nonlinear Schrödinger equation, spin relaxation by spin waves, entropy production and its generalization by a measure of irreversibiblity.