Taxonomic and functional responses of macroinvertebrates to riparian forest conversion in tropical streams

Land use change threatens the ecological integrity of tropical rivers and streams; however, few studies have simultaneously analyzed the taxonomic and functional responses of tropical macroinvertebrates to riparian forest conversion. Here, we used community structure, functional diversity, and stable isotope analyses to assess the impacts of riparian deforestation on macroinvertebrate communities of streams in southern Mexico. Monthly sampling during the dry season was conducted in streams with riparian forest (forest streams), and in streams with pasture dominating the riparian vegetation (pasture streams). Samples were collected for water quality (physical-chemical variables, nutrient concentrations, and total suspended solids), organic matter (leaf litter abundance and algal biomass), and macroinvertebrate abundance and diversity. Higher temperature, conductivity, suspended solids, and chlorophyll a were detected in pasture streams, while nitrate concentrations and leaf litter biomass were greater in forest streams. Macroinvertebrate density was higher in pasture sites, while no differences in taxonomic diversity and richness were found between land uses. Functional evenness was greater in forest streams, while richness and divergence were similar between land uses, despite differences in taxonomic composition. Environmental variables were associated with taxa distribution but not with functional traits, suggesting current conditions still promote redundancy in ecological function. Isotopic analyses indicated consumers in pasture streams were enriched in ¹³C and ¹5N relative to forest streams, potentially reflecting the higher algal biomass documented in pasture systems. Isotopic niches were broader and more overlapped in pasture streams, indicating more generalist feeding habits. No significant losses of taxonomic or functional diversity were detected in pasture streams. However, changes in trophic ecology suggest landscape-level processes are altering macroinvertebrate feeding habits in streams. The changes we observed in habitat, water quality, and macroinvertebrate community were related to the removal of the riparian vegetation, suggesting the structure and function of the focal systems would benefit from riparian restoration.

Saved in:
Bibliographic Details
Main Authors: Espinoza Toledo, Andrea Maestra autora 15474, Mendoza Carranza, Manuel Doctor autor 2024, Castillo Uzcanga, María Mercedes Doctora autora 9075, Barba Macías, Everardo Doctor autor 2025, Capps, Krista A. autora 14524
Format: Texto biblioteca
Language:eng
Subjects:Macroinvertebrados, Bosques ribereños, Deforestación, Isótopos estables, Calidad del agua, Variables ambientales, Nicho (Ecología), Artfrosur,
Online Access:https://www-sciencedirect-com.ezproxy.ecosur.mx/science/article/pii/S0048969720375033?via%3Dihub
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Land use change threatens the ecological integrity of tropical rivers and streams; however, few studies have simultaneously analyzed the taxonomic and functional responses of tropical macroinvertebrates to riparian forest conversion. Here, we used community structure, functional diversity, and stable isotope analyses to assess the impacts of riparian deforestation on macroinvertebrate communities of streams in southern Mexico. Monthly sampling during the dry season was conducted in streams with riparian forest (forest streams), and in streams with pasture dominating the riparian vegetation (pasture streams). Samples were collected for water quality (physical-chemical variables, nutrient concentrations, and total suspended solids), organic matter (leaf litter abundance and algal biomass), and macroinvertebrate abundance and diversity. Higher temperature, conductivity, suspended solids, and chlorophyll a were detected in pasture streams, while nitrate concentrations and leaf litter biomass were greater in forest streams. Macroinvertebrate density was higher in pasture sites, while no differences in taxonomic diversity and richness were found between land uses. Functional evenness was greater in forest streams, while richness and divergence were similar between land uses, despite differences in taxonomic composition. Environmental variables were associated with taxa distribution but not with functional traits, suggesting current conditions still promote redundancy in ecological function. Isotopic analyses indicated consumers in pasture streams were enriched in ¹³C and ¹5N relative to forest streams, potentially reflecting the higher algal biomass documented in pasture systems. Isotopic niches were broader and more overlapped in pasture streams, indicating more generalist feeding habits. No significant losses of taxonomic or functional diversity were detected in pasture streams. However, changes in trophic ecology suggest landscape-level processes are altering macroinvertebrate feeding habits in streams. The changes we observed in habitat, water quality, and macroinvertebrate community were related to the removal of the riparian vegetation, suggesting the structure and function of the focal systems would benefit from riparian restoration.