Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system

In agroforestry systems, shade trees strongly affect the physiology of the undergrown crop. However, a major paradigm is that the reduction in absorbed photosynthetically active radiation is, to a certain extent, compensated by an increase in light-use efficiency, thereby reducing the difference in net primary productivity between shaded and non-shaded plants. Due to the large spatial heterogeneity in agroforestry systems and the lack of appropriate tools, the combined effects of such variables have seldom been analysed, even though they may help understand physiological processes underlying yield dynamics. In this study, we monitored net primary productivity, during two years, on scales ranging from individual coffee plants to the entire plot. Absorbed radiation was mapped with a 3D model (MAESPA). Light-use efficiency and net assimilation rate were derived for each coffee plant individually. We found that although irradiance was reduced by 60% below crowns of shade trees, coffee light-use efficiency increased by 50%, leaving net primary productivity fairly stable across all shade levels. Variability of aboveground net primary productivity of coffee plants was caused primarily by the age of the plants and by intraspecific competition among them (drivers usually overlooked in the agroforestry literature) rather than by the presence of shade trees.

Saved in:
Bibliographic Details
Main Authors: Charbonnier, Fabien Sylvain Jacky Doctor 12314, Roupsard, Olivier autor/a 14027, Le Maire, Guerric autor/a, Guillemot, Joannès autor/a, Casanoves, Fernando autor/a 12746, Lacointe, André autor/a, Vaast, Philippe autor/a 14028, Allinne, Clémentine autor/a 14029, Audebert, Louise autor/a, Cambou, Aurélie autor/a, Clément Vidal, Anne autor/a, Defrenet, Elsa autor/a, Duursma, Remko A. autor/a 14030, Jarri, Laura autor/a, Jourdan, Christophe autor/a 12780, Khac, Emmanuelle autor/a, Leandro, Patricia autor/a, Medlyn, Belinda E. autor/a 14031, Saint André, Laurent autor/a, Thaler, Philippe autor/a, Van den Meersche, Karel autor/a, Barquero Aguilar, Alejandra autor/a, Lehner, Peter autor/a, Dreyer, Erwin autor/a 14032
Format: Texto biblioteca
Language:eng
Subjects:Coffea arabica, Árboles de sombra, Productividad agrícola, Biomasa, Competencia interespecífica, Cafetal, Sistemas agroforestales,
Online Access:http://onlinelibrary.wiley.com/doi/10.1111/pce.12964/abstract;jsessionid=B4E8154B5D42E0DBB7280AB53302D313.f04t01
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In agroforestry systems, shade trees strongly affect the physiology of the undergrown crop. However, a major paradigm is that the reduction in absorbed photosynthetically active radiation is, to a certain extent, compensated by an increase in light-use efficiency, thereby reducing the difference in net primary productivity between shaded and non-shaded plants. Due to the large spatial heterogeneity in agroforestry systems and the lack of appropriate tools, the combined effects of such variables have seldom been analysed, even though they may help understand physiological processes underlying yield dynamics. In this study, we monitored net primary productivity, during two years, on scales ranging from individual coffee plants to the entire plot. Absorbed radiation was mapped with a 3D model (MAESPA). Light-use efficiency and net assimilation rate were derived for each coffee plant individually. We found that although irradiance was reduced by 60% below crowns of shade trees, coffee light-use efficiency increased by 50%, leaving net primary productivity fairly stable across all shade levels. Variability of aboveground net primary productivity of coffee plants was caused primarily by the age of the plants and by intraspecific competition among them (drivers usually overlooked in the agroforestry literature) rather than by the presence of shade trees.