Spider diversity in a tropical habitat gradient in Chiapas, México

This paper presents an assessment of spider diversity in a complex landscape of southern Mexico. Eighteen different habitats were identified, measured and mapped across this fragmented landscape. Habitat types were characterized by measuring various features, including number of plant forms, tree cover and litter depth. Each month from February to April (dry season) and from June to August 2002 (wet season), spiders were sampled on each habitat by using pitfall traps and direct collection. Correlations between spider diversity and habitat characteristics were carried out to explore the relative contribution of each habitat variable as related to changes in spider composition and richness. In total, 115 spider species were recorded in 18 habitat types, and the mean number and density of species per habitat were 21 (± 3, standard error of mean) and 57 (± 9), respectively. The species recorded represent 41% of the fauna recorded in the Mexican state of Chiapas and 4% of the fauna recorded in Mexico. Relatively pristine habitats (e.g. deciduous forest) contained an important proportion of spider diversity in this fragmented landscape. Epigean spider diversity was significantly correlated with tree cover and with the diversity of plant forms during the rainy season. No correlation was detected between soil spider diversity and the habitat variables measured for any season. The results of this work suggest that in highly fragmented tropical landscapes, some habitat types (e.g. coffee plantations, hedgerows) might play an important role for the persistence of spider populations. The prevalence of relatively stable conditions in some of these habitats can allow spiders species (e.g. Nephila clavipes) to overcome adverse conditions such as a decrease in humidity and dramatic changes in temperature and wind exposure, allowing them to recolonize when favourable conditions return.

Saved in:
Bibliographic Details
Main Authors: Pinkus Rendón, Miguel Ángel Doctor autor 15953, León Cortés, Jorge Leonel Doctor autor 7292, Ibarra Núñez, Guillermo Doctor autor 2088
Format: Texto biblioteca
Language:eng
Subjects:Arañas, Diversidad biológica, Degradación ambiental, Artfrosur,
Online Access:https://doi.org/10.1111/j.1366-9516.2006.00217.x
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents an assessment of spider diversity in a complex landscape of southern Mexico. Eighteen different habitats were identified, measured and mapped across this fragmented landscape. Habitat types were characterized by measuring various features, including number of plant forms, tree cover and litter depth. Each month from February to April (dry season) and from June to August 2002 (wet season), spiders were sampled on each habitat by using pitfall traps and direct collection. Correlations between spider diversity and habitat characteristics were carried out to explore the relative contribution of each habitat variable as related to changes in spider composition and richness. In total, 115 spider species were recorded in 18 habitat types, and the mean number and density of species per habitat were 21 (± 3, standard error of mean) and 57 (± 9), respectively. The species recorded represent 41% of the fauna recorded in the Mexican state of Chiapas and 4% of the fauna recorded in Mexico. Relatively pristine habitats (e.g. deciduous forest) contained an important proportion of spider diversity in this fragmented landscape. Epigean spider diversity was significantly correlated with tree cover and with the diversity of plant forms during the rainy season. No correlation was detected between soil spider diversity and the habitat variables measured for any season. The results of this work suggest that in highly fragmented tropical landscapes, some habitat types (e.g. coffee plantations, hedgerows) might play an important role for the persistence of spider populations. The prevalence of relatively stable conditions in some of these habitats can allow spiders species (e.g. Nephila clavipes) to overcome adverse conditions such as a decrease in humidity and dramatic changes in temperature and wind exposure, allowing them to recolonize when favourable conditions return.