Molecular analysis of the major Phytophthora species on cocoa

The internally transcribed spacer (ITS) regions of the ribosomal RNA (rRNA) gene cluster of 161 isolates of Phytophthora species involved in pod rot, stem canker and leaf blight of cocoa were analysed to determine inter- and intraspecific variation in this disease complex. The species P. palmivora, P. megakarya, P. capsici, P. citrophthora and P. nicotianae could all be clearly distinguished by PCR amplification of the ITS region followed by restriction analysis with Hae III, Hinf I, Pvu II and Alu I. This method provided a relatively rapid identification procedure for these species, and was able to distinguish isolates that had previously been misidentified by morphological methods. Sequence analysis showed that the four main cocoa-associated species formed two distinct groups, one comprising P. capsici and P. citrophthora, and the other P. palmivora and P. megakarya. Detailed sequence analysis and comparison with published literature suggested that P. capsici isolates from cocoa may be closely related to P. tropicalis, a species recently described from Cyclamen and Dianthus.

Saved in:
Bibliographic Details
Main Authors: 43268 Appiah, A.A., 67949 Flodd, J., 43771 Archer, S.A., 51141 Bridge, P.D., 3645 British Society for Plant Pathology, Cambridge (RU)
Format: biblioteca
Language:eng
Published: Londres (RU) British Society for Plant Pathology 2004
Subjects:THEOBROMA CACAO, ENFERMEDAD, ENFERMEDADES DE LAS PLANTAS, ENFERMEDADES FUNGOSAS,
Online Access:https://doi.org/10.1111/j.0032-0862.2004.00980.x
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The internally transcribed spacer (ITS) regions of the ribosomal RNA (rRNA) gene cluster of 161 isolates of Phytophthora species involved in pod rot, stem canker and leaf blight of cocoa were analysed to determine inter- and intraspecific variation in this disease complex. The species P. palmivora, P. megakarya, P. capsici, P. citrophthora and P. nicotianae could all be clearly distinguished by PCR amplification of the ITS region followed by restriction analysis with Hae III, Hinf I, Pvu II and Alu I. This method provided a relatively rapid identification procedure for these species, and was able to distinguish isolates that had previously been misidentified by morphological methods. Sequence analysis showed that the four main cocoa-associated species formed two distinct groups, one comprising P. capsici and P. citrophthora, and the other P. palmivora and P. megakarya. Detailed sequence analysis and comparison with published literature suggested that P. capsici isolates from cocoa may be closely related to P. tropicalis, a species recently described from Cyclamen and Dianthus.