Nitrogen and fine root length dynamics in a tropical agroforestry system with periodically pruned Erythrina poeppigiana

The effect of pruning all branches (complete pruning) or retaining one branch (partial pruning) on the dynamics of nitrogen cycling in aboveground biomass, nitrogen supplying power of an amended Eutric Cambisol, and fine root length, was studied in an Erythrina poeppigiana (Walp.) O.F. Cook—tomato (Lycopersicon esculentum Mill.) alley cropping practice in Turrialba, Costa Rica during 1999–2000. Over the 1 year pruning cycle, in which trees were completely or partially pruned four times, respective aboveground biomass production was 4.4 Mg or 7 Mg ha−1 (2-year-old trees) and 5.5 Mg or 9 Mg ha−1 (8-year-old trees); N cycled in aboveground biomass was 123 kg or 187 kg ha−1 (2-year-old trees) and 160 kg or 256 kg N ha−1 (8-year-old trees); mean fine root length was 489 or 821 m (2-year-old-trees), 184 or 364 m per tree (8-year-old-trees). Pruning intensity did not significantly affect net N mineralisation and net nitrification rates during the tomato-cropping season. For the tomato crop, pre-plant mean net N mineralisation rate of 2.5 mg N kg−1 soil day−1 was significantly lower than 16.7 or 11.6 mg N kg−1 soil day−1 at the end of vegetative development and flowering, respectively. Mean net nitrification rates of 3.5, and 4.3 mg N kg−1 soil day−1, at pre-plant and end of vegetative development, respectively, were significantly higher than 0.3 mg N kg−1 soil day−1 at end of flowering. In humid tropical low-input agroforestry practices that depend on organic inputs from trees for crop nutrition, retention of a branch on the pruned tree stump appears to be a good alternative to removal of all branches for reducing N losses through higher N cycling in aboveground biomass, and for conserving fine root length for higher N uptake, although it might enhance competition for associated crops.

Saved in:
Bibliographic Details
Main Author: 57074 Chesney, P. autor/a
Format: biblioteca
Language:eng
Published: Berlín (Alemania): Springer, 2008
Subjects:MINERALIZACION, NITRIFICACION, CULTIVO ENTRE LINEAS, FENOLOGIA, AGROFORESTERIA, ERYTHRINA POEPPIGIANA, PODA, BIOMASA ARBOREA POR ENCIMA DEL SUELO, TROPICOS HUMEDOS,
Online Access:https://doi.org/10.1007/s10457-007-9064-7
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effect of pruning all branches (complete pruning) or retaining one branch (partial pruning) on the dynamics of nitrogen cycling in aboveground biomass, nitrogen supplying power of an amended Eutric Cambisol, and fine root length, was studied in an Erythrina poeppigiana (Walp.) O.F. Cook—tomato (Lycopersicon esculentum Mill.) alley cropping practice in Turrialba, Costa Rica during 1999–2000. Over the 1 year pruning cycle, in which trees were completely or partially pruned four times, respective aboveground biomass production was 4.4 Mg or 7 Mg ha−1 (2-year-old trees) and 5.5 Mg or 9 Mg ha−1 (8-year-old trees); N cycled in aboveground biomass was 123 kg or 187 kg ha−1 (2-year-old trees) and 160 kg or 256 kg N ha−1 (8-year-old trees); mean fine root length was 489 or 821 m (2-year-old-trees), 184 or 364 m per tree (8-year-old-trees). Pruning intensity did not significantly affect net N mineralisation and net nitrification rates during the tomato-cropping season. For the tomato crop, pre-plant mean net N mineralisation rate of 2.5 mg N kg−1 soil day−1 was significantly lower than 16.7 or 11.6 mg N kg−1 soil day−1 at the end of vegetative development and flowering, respectively. Mean net nitrification rates of 3.5, and 4.3 mg N kg−1 soil day−1, at pre-plant and end of vegetative development, respectively, were significantly higher than 0.3 mg N kg−1 soil day−1 at end of flowering. In humid tropical low-input agroforestry practices that depend on organic inputs from trees for crop nutrition, retention of a branch on the pruned tree stump appears to be a good alternative to removal of all branches for reducing N losses through higher N cycling in aboveground biomass, and for conserving fine root length for higher N uptake, although it might enhance competition for associated crops.