Volumetric T1 and T2 magnetic resonance brain toolkit for relaxometry mapping simulation

Abstract Introduction Relaxometry images are an important magnetic resonance imaging (MRI) technique in the clinical routine. Many diagnoses are based on the relaxometry maps to infer abnormal state in the tissue characteristic relaxation constant. In order to study the performance of these image processing approaches, a controlled simulated environment is necessary. However, a simulated relaxometry image tool is still lacking. This study proposes a computational anatomical brain phantom for MRI relaxometry images, which aims to offer an easy and flexible toolkit to test different image processing techniques, applied to MRI relaxometry maps in a controlled simulated environment. Methods A pipeline of image processing techniques such as brain extraction, image segmentation, normalization to a common space and signal relaxation decay simulation, were applied to a brain structural ICBM brain template, on both T1 and T2 weighted images, in order to simulate a volumetric brain relaxometry phantom. The FMRIB Software Library (FSL) toolkits were used here as the base image processing needed to all the relaxometry reconstruction. Results All the image processing procedures are performed using automatic algorithms. In addition, different artefact levels can be set from different sources such as Rician noise and radio-frequency inhomogeneity noises. Conclusion The main goal of this project is to help researchers in their future image processing analysis involving MRI relaxometry images, offering reliable and robust brain relaxometry simulation modelling. Furthermore, the entire pipeline is open-source, which provides a wide collaboration between researchers who may want to improve the software and its functionality.

Saved in:
Bibliographic Details
Main Author: Senra Filho,Antonio Carlos da Silva
Format: Digital revista
Language:English
Published: Sociedade Brasileira de Engenharia Biomédica 2016
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402016000300301
Tags: Add Tag
No Tags, Be the first to tag this record!