Optimized sizing of reinforced concrete structural elements considering the effect of carbonation

Abstract The environmental impact of reinforced concrete structures occurs during all phases of the building's life cycle, with emphasis on the stages of extraction and transport of raw materials and concrete production. An effective way to reduce the impact of these structures is to reduce the consumption of materials with the use of optimization techniques. The present study evaluates carbon dioxide emissions of concrete with two different compressive strengths for the region of Chapecó, SC. With these data, the optimization of structural elements was performed aiming to minimize their environmental impact. The carbonation of optimized elements was also evaluated. Among the results, it was observed that concretes with lower strength have better CO2 absorption rates (for the elements analyzed 20MPa concrete absorbed about 90% and 112% more CO2 than 35MPa concrete to columns and beams, respectively). In addition, it was observed that local factors can strongly influence the impacts, with the transport of materials reaching up to 6.4% of total emissions.

Saved in:
Bibliographic Details
Main Authors: Alievi,Jeferson Junior, Santoro,Jair Frederico, Kripka,Moacir
Format: Digital revista
Language:English
Published: IBRACON - Instituto Brasileiro do Concreto 2022
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952022000600200
Tags: Add Tag
No Tags, Be the first to tag this record!