Rollover stability of precast concrete beams supported by elastomeric bearing pads

Abstract During construction of precast girder bridges, there is the concern on rollover instability of the beams when exclusively supported by elastomeric bearing pads. This type of failure has been the focus of recent research due several accidents reported. However, these studies have not considered the nonlinear behavior of elastomeric bearing pads and the lift-off effect. Therefore, this paper presents a parametric study with a finite element model calibrated with experimental results, reported in the literature, through a nonlinear geometrical analysis and considering that concrete behaves linearly. Besides, the experimental results are compared to simplified approaches which account the pad nonlinear behavior and the lift-off effect by utilizing its secant rotational stiffness. From the results, the difference between the instability load from nonlinear geometrical analysis and experimental results was 8.7 %, and the simplified eigenvalue solution and experimental was 11.4 %, which was the best fit compared to the other existing analytical models. From the parametrical analysis, the instability load was considerably decreased by varying the initial lateral deflection, the skewed pad rotation, top flange width and the span of the beam.

Saved in:
Bibliographic Details
Main Authors: KRAHL,P. A., CARRAZEDO,R., DEBS,M. K. EL
Format: Digital revista
Language:English
Published: IBRACON - Instituto Brasileiro do Concreto 2017
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952017000601192
Tags: Add Tag
No Tags, Be the first to tag this record!