Ibuprofen biosorption by chemically activated Saccharomyces cerevisiae

Abstract Saccharomyces cerevisiae biomass was activated chemically, and its ibuprofen (IBP) biosorption capabilities were assessed regarding IBP removal from an aqueous solution. The effects of pH (2-10), contact time (0-90 min), IBP concentration (5-35 mg L-1), and temperature (20, 30, 40°C) were evaluated in batch studies. Higher removal rates of IBP were found at pH 2.0. The pseudo-second-order kinetic model best described the experimental data. Both the Langmuir and Freundlich isotherm models described the equilibrium data satisfactorily. The maximum biosorption capacity for IBP onto chemically activated Saccharomyces cerevisiae biomass (CA-YB) was estimated at 13.39 mg g-1 at 40°C. The activation energy calculated by the Dubinin-Radushkevich isotherm model was 9.129 kJ mol-1, indicating that a chemical process mediated the biosorption of IBP onto CA-YB. According to thermodynamic studies, IBP biosorption is spontaneous and endothermic. FTIR analysis revealed that the carboxyl, hydroxyl, phosphoryl, and amino groups were involved in the biosorption process of IBP. These findings indicated that CA-YB could be an alternative biosorbent for IBP removal from aqueous media.

Saved in:
Bibliographic Details
Main Authors: Santos,Bruna Assis Paim dos, Dall’Oglio,Evandro Luiz, Siqueira,Adriano Buzutti de, Caixeta,Danila Soares, Lopes,Viviane Cristina Padilha, Vasconcelos,Leonardo Gomes de, Morais,Eduardo Beraldo de
Format: Digital revista
Language:English
Published: Instituto de Pesquisas Ambientais em Bacias Hidrográficas 2022
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1980-993X2022000500303
Tags: Add Tag
No Tags, Be the first to tag this record!