On time derivatives for <X^&gt; and <p^&gt;: formal 1D calculations

We present formal 1D calculations of the time derivatives of the mean values of the position (x) and momentum (p) operators in the coordinate representation. We call these calculations formal because we do not care for the appropriate class of functions on which the involved (self-adjoint) operators and some of its products must act. Throughout the paper, we examine and discuss in detail the conditions under which two pairs of relations involving these derivatives (which have been previously published) can be formally equivalent. We show that the boundary terms present in d{x}/dt and d{x}/dt can be written so that they only depend on the values taken there by the probability density, its spatial derivative, the probability current density and the external potential V= V9 (x) V = V(x). We also show that d(p)/dt is equal to -dv /dx=(FQ) plus a boundary term (Fq = aQ/ax)is the quantum force and Q is the Bohm's quantum potential). We verify that (fq) is simply obtained by evaluating a certain quantity on each end of the interval containing the particle and by subtracting the two results. That quantity is precisely proportional to the integrand of the so-called Fisher information in some particular cases. We have noted that fQ has a significant role in situations in which the particle is confined to a region, even if V is zero inside that region.

Saved in:
Bibliographic Details
Main Author: De Vincenzo,Salvatore
Format: Digital revista
Language:English
Published: Sociedade Brasileira de Física 2013
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172013000200008
Tags: Add Tag
No Tags, Be the first to tag this record!