Experimental and numerical studies of laminated plates with delamination subjected to compressive loads

Abstract In this research, the multilayered composite plates made of glass/epoxy material were experimentally and numerically investigated under compressive loading conditions. The intact and defected structures were analyzed with the use of finite element method. The influence of the thickness and geometrical imperfection level were carried out in the linear buckling analysis. The nonlinear analysis was performed to determine the influence of the delamination length on the buckling behavior of the plate. The numerical results were validated by experiments. Experimental tests were performed for structures having artificial delamination between laminate layers. The buckling behavior was monitored using the nondestructive and noncontact structural vision-based health monitoring system (the digital image correlation (DIC)). The influence of the different delamination behavior during the tests on the compressive load capacity was determined by a detailed analysis of DIC measurements. The 20% reduction of the compressive load was noticed in the cases with local buckling of delamination.

Saved in:
Bibliographic Details
Main Authors: Stawiarski,Adam, Muc,Aleksander, Barski,Marek
Format: Digital revista
Language:English
Published: Associação Brasileira de Ciências Mecânicas 2020
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252020000500505
Tags: Add Tag
No Tags, Be the first to tag this record!