APPLICATION OF BACK PROPAGATION NEURAL NETWORK IN SPORTS FATIGUE INDICATORS

ABSTRACT Introduction High-intensity rehabilitation training will produce exercise fatigue. Objective A backpropagation (BP) network neural algorithm is proposed to predict sports fatigue based on electromyography (EMG) signal images. Methods The principal component analysis algorithm is used to reduce the dimension of EMG signal features. The knee joint angle is estimated by the regularized over-limit learning machine algorithm and the BP neural network algorithm. Results The RMSE value of the regularized over-limit learning machine algorithm is lower than that of the BP neural network algorithm. At the same time, the ρ value of the regularized over-limit learning machine algorithm is closer to 1, indicating its higher accuracy. Conclusions The model training time of the regularized over-limit learning machine algorithm has been greatly reduced, which improves efficiency. Level of evidence II; Therapeutic studies - investigation of treatment results.

Saved in:
Bibliographic Details
Main Authors: Wang,Xiaoli, Dai,Chunmin
Format: Digital revista
Language:English
Published: Sociedade Brasileira de Medicina do Exercício e do Esporte 2021
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922021000300249
Tags: Add Tag
No Tags, Be the first to tag this record!