Multi-walled carbon nanotube reinforced polymer as a bonded repair for Al 2024-T3 fatigue crack growth

ABSTRACT The influence on multi walled carbon nanotubes (MWCNT, or simply CNT) as a reinforcement material in an epoxy resin in order to decrease the fatigue crack propagation rate in the 2024 T3 aeronautical Al alloy was studied. CT samples were pre-cracked in a resonant fatigue machine until a 4 mm pre-crack length. Four groups of samples were considered: a non-repaired reference group, two groups repaired with epoxy resin reinforced with two CNT proportions (0.5 and 1 vol %) and a group repaired by the conventional “stop drill” technique. The crack was propagated until a length of 16 mm, measuring the number of cycles to this crack propagation. Resin Hysol EA9320 NA was used, mixing it with the CNT and the hardener, by ultrasonic stirring. S-N curves (stress vs number of cycles) were plotted obtaining an increment of 104% for a 0.5 vol% of CNT, 128% for 1 vol% of CNT and 400% for “stop drill” repairing. These results were referred to the non-repaired samples at the lower load level. These results showed that in repaired samples with CNT reinforced resin, the initiation and propagation of cracks would be delayed, constituting this method a reasonable and convenient repairing procedure useful for aeronautical cracked structures.

Saved in:
Bibliographic Details
Main Authors: Monsalve,Alberto, Solís,Roberto, Díaz,Mauricio, Carrasco,Sebastián, Artigas,Alfredo
Format: Digital revista
Language:English
Published: Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro 2018
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762018000400426
Tags: Add Tag
No Tags, Be the first to tag this record!