Three-dimensional analysis of an orthodontic delta spring

INTRODUCTION: The purpose of this study was to analyze the force system, moment-force ratios (M/F) and von Mises stresses in an orthodontic delta spring using a 3D finite element model. The M/F ratio produced by an orthodontic spring is related to the different types of tooth movement that are likely to occur in the sagittal and occlusal planes. METHODS: Analyses were performed using a 3D finite element model, and a data acquisition system was used to validate the numerical results. RESULTS: Reactive forces between 0.0 and 2.0 N were observed along the x-axis, while null values were observed along the y- and z-axes. The maximum activation that ensured geometric stability and mechanical stresses below the elastic limit of the material was 10.0 mm. CONCLUSION: The results indicate that a delta spring can provide (i) uncontrolled tipping for activation of less than 1.0 mm; (ii) controlled counterclockwise tipping for activation between 1.0 and 4.5 mm; (iii) translation for activation between 4.5 and 5.0 mm; and (iv) controlled clockwise tipping in the sagittal plane for activation between 5.0 and 10.0 mm. No tooth movement was observed in the occlusal plane for the M/F ratios observed.

Saved in:
Bibliographic Details
Main Authors: Rodrigues,Fábio Rodrigo Mandello, Borges,Paulo César, Luersen,Marco Antônio, Ferreira,Marcelo do Amaral
Format: Digital revista
Language:English
Published: SBEB - Sociedade Brasileira de Engenharia Biomédica 2014
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-31512014000300007
Tags: Add Tag
No Tags, Be the first to tag this record!