The Effect of the Cooling Rate on the Microstructure and Microsegregation: An Experimental and Numerical Investigation of Solidification in Hypoperitectic Cu − 20 wt.% Sn Alloy

Abstract Hypoperitectic Cu − 20 wt.% Sn alloy was solidified under different cooling rates and solidification growths using directional solidification system. The effects of cooling rate and solidification growth on the microsegregation profiles and tertiary dendritic arm spacing (λ3) were experimentally investigated along the casting. A mathematical model known as phase-field was applied to simulate microstructure and microsegregation during solidification in system Cu-Sn liquid. In this paper the applicability of the phase-field model to the solidification problem in a real alloy system was systematically explored. Microsegregation profiles and realistic dendritic structures were obtained using the phase-field model. The results calculated by phase-field model show various solidification features consistent with our experiment. The calculated tertiary dendritic arm spacing (λ3) and microsegregation profiles were compared with experimental values from directional solidification system. Since the calculated microsegregation profiles using the equilibrium partition coefficient (keq) can yielded discrepancies from the experimental results, an effective partition coefficient (kef) as a function of solidification growth, is proposed in phase-field model, showing a good agreement with the experimental data for any case examined.

Saved in:
Bibliographic Details
Main Authors: Paradela,Késsia Gomes, Garção,Wysllan Jefferson Lima, Baptista,Luis Antônio de Souza, Sales,Roberto Carlos, Oliveira,Vânia Cristina de, Ferreira,Alexandre Furtado
Format: Digital revista
Language:English
Published: ABM, ABC, ABPol 2020
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392020000400207
Tags: Add Tag
No Tags, Be the first to tag this record!