Study on the Application of Electric Field to Giant Vesicles Comprised of 1,2-Dilauroyl-Sn-Glycero-3-Phosphatidylcholine Using Optical Fluorescence Microscopy
The influence of alternating electric field (AC) in the structure and dynamics of giant unilamellar vesicles (GUVs) comprised of 1,2-dilauroyl-sn-glycero-3-phosphatidylcholine (DLPC) is reported. The investigations were conducted by using optical fluorescence microscopy as the method of analysis. The lipid membrane of the DLPC GUVs at the fluid phase can be deformed and they migrate towards the electrodes under AC electric field. Nevertheless, membrane disruption or vesicle fusion was never noticed. The addition of concentrated glucose solution influences the osmotic pressure of the system leading to the formation of filaments at the outer region of the GUVs. These long flexible cylinders do not retract spontaneously. However, the application of AC electric field (20 V/mm, 20 Hz) enables the filaments to be retracted back to the GUVs membrane at a calculated speed of 0.18 µm.s-1
Main Authors: | , , , , , , , |
---|---|
Format: | Digital revista |
Language: | English |
Published: |
ABM, ABC, ABPol
2017
|
Online Access: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000800034 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|