Microstructural analysis of carbon nanomaterials produced from pyrolysis/combustion of Styrene-Butadiene-Rubber (SBR)

Styrene-Butadiene-Rubber (SBR) is a synthetic rubber copolymer used to fabricate several products. This study aims to demonstrate the use of SBR as feedstock for carbon nanomaterials (nanofibers and nanotubes) growth, and therefore to establish a novel process for destination of waste products containing SBR. A three stage electrically heated flow reactor was used. Small pellets of rubber were pyrolyzed at a temperature of 1000 ºC. The pyrolyzates were mixed with oxygen-containing gases and were burned. The products of combustion were used to synthesize the carbon nanomaterials (CNMs) at the presence of a catalyst. CNMs have a wide range of potential applications due to their extraordinary mechanical, thermal and electrical properties. Produced materials were characterized by SEM and TEM, whereas combustion products were assessed using GC. Results showed that CNMs with outer diameters of 30-100 nm and lengths of about 30 µm were formed. Therefore, it was demonstrated that waste products containing SBR can be used to generate CNMs which are value-added products of intense technological interest.

Saved in:
Bibliographic Details
Main Authors: Alves,Joner Oliveira, Zhuo,Chuanwei, Levendis,Yiannis Angelo, Tenório,Jorge Alberto Soares
Format: Digital revista
Language:English
Published: ABM, ABC, ABPol 2011
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392011000400012
Tags: Add Tag
No Tags, Be the first to tag this record!