The Gradient Subspace Approximation as Local Search Engine within Evolutionary Multi-objective Optimization Algorithms

Abstract: In this paper, we argue that the gradient subspace approximation (GSA) is a powerful local search tool within memetic algorithms for the treatment of multi-objective optimization problems. The GSA utilizes the neighborhood information within the current population in order to compute the best approximation of the gradient at a given candidate solution. The computation of the search direction comes hence for free in terms of additional function evaluations within population based search algorithms such as evolutionary algorithms. Its benefits have recently been discussed in the context of scalar optimization. Here, we discuss and adapt the GSA for the case that multiple objectives have to be considered concurrently. We will further on hybridize line searchers that utilize GSA to obtain the search direction with two different multi-objective evolutionary algorithms. Numerical results on selected benchmark problems indicate the strength of the GSA-based local search within the evolutionary strategies.

Saved in:
Bibliographic Details
Main Authors: Alvarado,Sergio, Segura,Carlos, Schütze,Oliver, Zapotecas,Saúl
Format: Digital revista
Language:English
Published: Instituto Politécnico Nacional, Centro de Investigación en Computación 2018
Online Access:http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-55462018000200363
Tags: Add Tag
No Tags, Be the first to tag this record!