Double asymptotic inequalities for the generalized Wallis ratio

Abstract Asymptotic estimates for the generalized Wallis ratio are presented for x&#8712;&#8477;+ on the basis of Stirling's approximation formula for the &#915; function. For example, for an integer p&#8805;2 and a real we have the following double asymptotic inequality A(p,x) < W*(x) < B(p,x), Where , withy (p)&#8801;y(y+1)&#8943;(y+p&#8722;1), the Pochhammer rising(upper) factorial of order p.

Saved in:
Bibliographic Details
Main Author: Lampret,Vito
Format: Digital revista
Language:English
Published: Universidad de La Frontera. Departamento de Matemática y Estadística. 2024
Online Access:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462024000100021
Tags: Add Tag
No Tags, Be the first to tag this record!