Double asymptotic inequalities for the generalized Wallis ratio
Abstract Asymptotic estimates for the generalized Wallis ratio are presented for x∈ℝ+ on the basis of Stirling's approximation formula for the Γ function. For example, for an integer p≥2 and a real we have the following double asymptotic inequality A(p,x) < W*(x) < B(p,x), Where , withy (p)≡y(y+1)⋯(y+p−1), the Pochhammer rising(upper) factorial of order p.
Saved in:
Main Author: | |
---|---|
Format: | Digital revista |
Language: | English |
Published: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2024
|
Online Access: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462024000100021 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|