Euler’s constant, new classes of sequences and estimates

We give two classes of sequences with the argument of the logarithmic term modified and also with some additional terms besides those in the denition sequence, and that converge quickly to <img src="http:/fbpe/img/cubo/v15n3/art10-fig1.jpg" name="_x0000_i1043" width=380 height=40 border=0 id="_x0000_i1043">, where a <img src="http:/fbpe/img/cubo/v15n3/art05-fig7.jpg" name="_x0000_i1042" width=17 height=17 border=0 id="_x0000_i1042"> (0, + <img src="http:/fbpe/img/cubo/v15n3/art10-fig7.jpg" name="_x0000_i1041" width=18 height=13 border=0 id="_x0000_i1041">). We present the pattern in forming these sequences, expressing the coefficients that appear with the Bernoulli numbers. Also, we obtain estimates containing best constants for <img src="http:/fbpe/img/cubo/v15n3/art10-fig2.jpg" name="_x0000_i1040" width=507 height=41 border=0 id="_x0000_i1040">and <img src="http:/fbpe/img/cubo/v15n3/art10-fig3.jpg" name="_x0000_i1039" width=38 height=28 border=0 id="_x0000_i1039"><img src="http:/fbpe/img/cubo/v15n3/art10-fig4.jpg" name="_x0000_i1038" width=600 height=38 border=0 id="_x0000_i1038">, where <img src="http:/fbpe/img/cubo/v15n3/art10-fig5.jpg" name="_x0000_i1037" width=19 height=23 border=0 id="_x0000_i1037"> = <img src="http:/fbpe/img/cubo/v15n3/art10-fig5.jpg" name="_x0000_i1036" width=19 height=23 border=0 id="_x0000_i1036">(1) is the Euler&rsquo;s onstant.

Saved in:
Bibliographic Details
Main Author: Sînt&#259;m&#259;rian,Alina
Format: Digital revista
Language:English
Published: Universidad de La Frontera. Departamento de Matemática y Estadística. 2013
Online Access:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462013000300010
Tags: Add Tag
No Tags, Be the first to tag this record!