The Learning of an Opponent’s Approximate Preferences in Bilateral Automated Negotiation

Autonomous agents can negotiate on behalf of buyers and sellers to make a contract in the e-marketplace. In bilateral negotiation, they need to find a joint agreement by satisfying each other. That is, an agent should learn its opponent’s preferences. However, the agent has limited time to find an agreement while trying to protect its payoffs by keeping its preferences private. In doing so, generating offers with incomplete information about the opponent’s preferences is a complex process and, therefore, learning these preferences in a short time can assist the agent to generate proper offers. In this paper, we have developed an incremental on-line learning approach by using a hybrid soft-computing technique to learn the opponent’s preferences. In our learning approach, first, the size of possible preferences is reduced by encoding the uncertain preferences into a series of fuzzy membership functions. Then, a simplified genetic algorithm is used to search the best fuzzy preferences that articulate the opponent’s intention. Experimental results showed that our learning approach can estimate the opponent’s preferences effectively. Moreover, results indicate that agents which use the proposed learning approach not only have more chances to reach agreements but also will be able to find agreements with greater joint utility.

Saved in:
Bibliographic Details
Main Authors: Jazayeriy,Hamid, Azmi-Murad,Masrah, Sulaiman,Nasir, Izura Udizir,Nur
Format: Digital revista
Language:English
Published: Universidad de Talca 2011
Online Access:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-18762011000300006
Tags: Add Tag
No Tags, Be the first to tag this record!