Extended results on sum divisor cordial labeling
Abstract A sum divisor cordial labeling of a graph G with vertex set V (G) is a bijection f : V (G) → {1, 2, ..., |V (G)|} such that an edge uv assigned the label 1 if 2 divides f(u)+f(v) and 0 otherwise. Further the number of edges labeled with 0 and the the number of edges labeled with 1 differ by atmost 1. A graph with sum divisor cordial labeling is called a sum divisor cordial graph. In this paper we prove that the graphs P n + P n (n is odd), P n @K 1,m , Cn@K 1,m (n is odd), W n * K 1,m (n is even), < K₁¹ ,n,n ∆K₁²2 ,n,n >, < Fl n ¹∆Fl n ² > are sum divisor cordial graphs.
Main Authors: | , |
---|---|
Format: | Digital revista |
Language: | English |
Published: |
Universidad Católica del Norte, Departamento de Matemáticas
2019
|
Online Access: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000400653 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|