3-difference cordiality of some corona graphs

Abstract Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map where k is an integer 2 ≤ k ≤ p. For each edge uv, assign the label |f (u) − f (v)|. f is called k-difference cordial labeling of G if |vf (i) − vf (j)| ≤ 1 and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the umber of vertices labelled with x, ef (1) and ef (0) respectively denote the number of edges labelled with 1 and not labelled with 1. A graph with a k-difference cordial labeling is called a k-difference cordial graph. In this paper we investigate 3-difference cordial labeling behavior of Tn ʘK1, Tn ʘ2K1, Tn ʘK2, A(Tn)ʘK1, A(Tn)ʘ 2K1, A(Tn) ʘ K2.

Saved in:
Bibliographic Details
Main Authors: Ponraj,R., Adaickalam,M. Maria, Kala,R.
Format: Digital revista
Language:English
Published: Universidad Católica del Norte, Departamento de Matemáticas 2019
Online Access:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000100083
Tags: Add Tag
No Tags, Be the first to tag this record!