Some results on SD-Prime cordial labeling
Abstract: Given a bijection ʄ: V(G) → {1,2, …,|V(G)|}, we associate 2 integers S = ʄ(u)+ʄ(v) and D = |ʄ(u)-ʄ(v)| with every edge uv in E(G). The labeling ʄ induces an edge labeling ʄ' : E(G) → {0,1} such that for any edge uv in E(G), ʄ '(uv)=1 if gcd(S,D)=1, and ʄ ' (uv)=0 otherwise. Let eʄ ' (i) be the number of edges labeled with i ∈ {0,1}. We say ʄ is SD-prime cordial labeling if | eʄ ' (0)- e ʄ' (1)| ≤ 1. Moreover G is SD-prime cordial if it admits SD-prime cordial labeling. In this paper, we investigate the SD-prime cordial labeling of some derived graphs.
Main Authors: | , |
---|---|
Format: | Digital revista |
Language: | English |
Published: |
Universidad Católica del Norte, Departamento de Matemáticas
2017
|
Online Access: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000400601 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|