REDUCTION OF EXCESS SLUDGE PRODUCTION IN AN ACTIVATED SLUDGE SYSTEM BASED ON LYSIS-CRYPTIC GROWTH, UNCOUPLING METABOLISM AND FOLIC ACID ADDITION

Abstract The following sludge reduction alternatives were tested in wastewater biological reactors: oxic-settling-anaerobic (OSA-process); ultrasonic disintegration (UD); chlorination (CH); 3,3',4',5-tetrachlorosalicylanilide (TCS); and folic acid (FA). Compared to the control system, UD reduced 55% of the sludge production, and greater substrate and nutrient removal efficiency was achieved. CH worsened the sludge settleability and increased the SVI values; the system achieved 25% of sludge reduction. OSA showed 50% and 60% of sludge reduction after 16 and 10 hours under anaerobic conditions, respectively. The observed sludge yield during TCS addition was decreased by 40%, and the sludge settleability worsened. FA presented the highest sludge reduction (75%), and the system improved the nutrient removal efficiency by 30% compared to the control system and maintained the sludge properties. Acute toxicity conducted with Daphnia magna classified the effluent from the sludge reduction systems as non-toxic for discharge into water sources.

Saved in:
Bibliographic Details
Main Authors: Velho,V. F., Daudt,G. C., Martins,C. L., Belli Filho,P., Costa,R. H. R.
Format: Digital revista
Language:English
Published: Brazilian Society of Chemical Engineering 2016
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322016000100047
Tags: Add Tag
No Tags, Be the first to tag this record!