Effect of tamoxifen in RAFT miniemulsion polymerization during the synthesis of polymer nanoparticles

Tamoxifen (TXF) is currently the only hormonal agent used for treatment of breast cancer. Although very effective, TXF presents low solubility in water, which affects its absorption and bioavailability. A common strategy to overcome this barrier is the formulation of a drug delivery system (DDS) in order to increase the drug stability and improve the treatment effectiveness. Reversible addition-fragmentation chain transfer (RAFT) polymerization is the most versatile method of controlled/living radical polymerization (CLRP), allowing for synthesis of well-defined polymers and being adapted to a wide range of polymerization systems. Miniemulsion polymerization is a dispersed system that is commonly used to prepare nanoparticles (NP) with 50 to 500 nm of diameter. The aim of this work was to evaluate the effect of the in situ incorporation of TXF during miniemulsion conventional and RAFT polymerizations, using methyl methacrylate (MMA) as monomer. Although the in situ addition of TXF promoted a slight reduction of the reaction rate, it did not affect the final particle size distribution of the latex or the molecular weight control exerted by the RAFT agent. The obtained results suggest that in situ incorporation of TXF during the synthesis of polymer NP via RAFT polymerization allows for production of a polymer DDS for different uses, such as the breast cancer treatment.

Saved in:
Bibliographic Details
Main Authors: Moreira,Tailane Sant'Anna, Oliveira,Marco Antônio Monteiro de, Nele,Márcio, Pinto,José Carlos, Lima,Luis Mauricio Trambaioli da Rocha e
Format: Digital revista
Language:English
Published: Associação Brasileira de Polímeros 2014
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-14282014000700006
Tags: Add Tag
No Tags, Be the first to tag this record!