A generalized nonlinear tempeature response function for some growth and developmental parameters in kiwifruit (Actinidia deliciosa (A. Chev.) C. F. Liang & A. R. Ferguson)

Temperature is a major factor that affects metabolic processes in living organisms. Thermal time has been widely used to account for the effects of temperature on crop growth and development. However, the thermal time approach has been criticized because it assumes a linear relationship between the rate of crop growth or development and temperature. The response of the rate of crop growth and development to temperature is nonlinear. The objective of this study was to develop a generalized nonlinear temperature response function for some growth and developmental parameters in kiwifruit (Actinidia deliciosa (A. Chev.) C. F. Liang & A. R. Ferguson). The nonlinear function has three coefficients (the cardinal temperatures), which were 0ºC, 25ºC, and 40ºC. Data of temperature response of relative growth rate, relative leaf area growth, net photosynthesis rate, and leaf appearance rate in kiwifruit (female cv. Hayward) at two light levels, which are from published research, were used as independent data for evaluating the performance of the nonlinear and the thermal time functions. The results showed that the generalized nonlinear response function is better than the thermal time approach, and the temperature response of several growth and developmental parameters in kiwifruit can be described with the same response function.

Saved in:
Bibliographic Details
Main Author: Streck,Nereu Augusto
Format: Digital revista
Language:English
Published: Universidade Federal de Santa Maria 2003
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782003000200012
Tags: Add Tag
No Tags, Be the first to tag this record!